2B46
総頸動脈内血流の2次元超音波計測融合シミュレーションにおける2次元断面流量の軸方向変化の影響

The influence of axial variation of the plane flow rate on two-dimensional ultrasonic-measurement-integrated simulation of blood flow in a common carotid artery

非 松本拓也（東北大院） 正 船本健一（東北大流体研）

Takuya MATSUMOTO, Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai
Kenichi FUNAMOTO, Institute of Fluid Science, Tohoku University
Toshiyuki HAYASE, Institute of Fluid Science, Tohoku University

Key words：Measurement-integrated simulation, Hemodynamics, Ultrasonic measurement, Carotid artery

1. 綜言

循環器系疾患はわが国の死亡原因の25%以上を占め、その発症と進展は心血管力学と関連があることが多くの研究により指摘されており、血流動態の正確な把握が必要とされている。しかし、臨床現場で用いられている計測機器は、取得可能な情報の制限や解釈の限界などの問題を有する。また、数値解析により血流場の詳細な情報を取得できるが、生体特性や環境条件の厳密な設定が困難であるため解析結果が実際の血流場と一致しない可能性がある。

そこで著者らは、血流場を再現する手法として、血流解析結果の超音波計測に対する誤差をフィードバックしながら解析を行う臨床用2次元超音波計測融合シミュレーション（Ultrasonic-Measurement-Integrated Simulation, UMI-Simulation）を提案した。本手法により健康な血管と病変を有する血管を判定できる可能性が示唆され、血流解析における2次元血流シミュレーションの妥当性は明らかになっていない。特に、計算対象とする2次元断面内の流量（以下では単に流量と呼ぶ）を計測、実験を実行し、数値解析の検証を行った。実験では、実際の血流場では軸方向に変化するのに対し、数値解析では一定であるとの影響を見積る必要がある。血流の3次元性が計算精度に与える影響を調べるため、前報他において総頸動脈の3次元定常流の数値解を基準解と定義した数値実験を行った。基準解に対して軸方向超音波計測を行ったことに基づき2次元断面上の速度分布（ブラッド速度）を用いて2次元UMIシミュレーションを行い、推定される流量が基準解の流量と一致する領域で速度ベクトル誤差が最小となることを示した。しかし、推定された流量は基準解の平均値よりも小さく、その原因は検討されていなかった。

本稿では、その数値を基準として2次元UMIシミュレーションを行い、解析結果の速度ベクトルとブラッド速度の計算精度を評価することにより、基準解との比較を2次元UMIシミュレーションの計算精度に与える影響について調べた。

2. 方法

2.1 解析対象

本研究の解析対象は頸動脈内の定常流である。50歳男性パラメティアの頸動脈のX写真CTデータを基に、3次元モデル作成・編集ソフトウェア（Mimics 7.3, Materialise, Belgium）

Fig. 1 Schematic diagram of UMI simulation system.

日本機械学会 [No.13-69]第26回バイオエンジニアリング講演会論文集（2014.11.12, 仙台）
ここで \(U \) および \(L \) はそれぞれ代表速度と代表長さを表す。\(K_c \) はフィードバックゲイン（無次元数）であり、\(K_c = 0 \) の場合はフィードバックなしの通常のシミュレーションを意味する。フィードバック領域 \(FB \) は \(0.738 \text{ m} \leq x \leq 0.757 \text{ m} \) の範囲である。以下、基礎方程式を、スタグード格子系を用いて有限体積法に基づいて離散化し、SIMPLER 法に類似した方法により解いた(4)。逆流時、時間微分項の離散化には QUICK スキーム、2次精度離解法を用い、線形代数方程式は重対角行列の離散解法（MSI法）により解いた。

計算精度の評価には、以下に示す流量 \(Q \) と基準値と2次元 UMI シミュレーションの間のドップラ速度の誤差 \(e_{v_r} \) および速度ベクトルの誤差 \(e_{v_u} \) を用いた。

\[
Q = d_0 \sum u \quad (i,j) \quad (4)
\]

\[
e_{v_r} = \frac{\sum (|v_r(i,j) - v_r(i',j')|)}{u} \quad (5)
\]

\[
e_{v_u} = \frac{1}{N_a} \sum u \quad (i,j) \quad (6)
\]

ここで、\(i,j \) は \(x,y \) 座標に対応する格子点番号、\(d_0 \) は格子点間隔（一定）、\(N_a \) は対象とする領域 \(A \) の格子点数を表す。

3. 結果と考察

UMI シミュレーションのフィードバックゲインはドップラ速度誤差のフィードバック領域内の空間平均値 \(e_{v_FB} \) が最小となる \(K_c = 100 \) とし、基準解と \(K_c = 0 \) の場合の通常のシミュレーションと比較した。

Fig. 3 に流量 \(Q \) の方向の変化を示す。基準解は流量が軸方向に約 13%変化する。一方、2次元 UMI シミュレーションの流量は軸方向に一定であり、ドップラ速度の誤差 \(e_{v_FB} \) が最も小さくなるように流量推定を行った場合、1.93×10^{-3} m/s の推定結果が得られた（図の実線）。

\[Q = 1.93 \times 10^{-3} \text{ m}^3/\text{s} \]

\[Q = 2.03 \times 10^{-3} \text{ m}^3/\text{s} \]

\[Q = 1.83 \times 10^{-3} \text{ m}^3/\text{s} \]

Fig. 3 Flow rate at each x-position.

\[(a) \text{ Ordinary simulation (} K_c = 0 \text{)} \]

\[(b) \text{ UMI simulation (} K_c = 100 \text{)} \]

Fig. 4 Space-averaged error norms of Doppler velocity at each x-position.

3. 結果と考察

UMI シミュレーションのフィードバックゲインはドップラ速度誤差のフィードバック領域内の空間平均値 \(e_{v_FB} \) が最小となる \(K_c = 100 \) とし、基準解と \(K_c = 0 \) の場合の通常のシミュレーションと比較した。

Fig. 3 に流量 \(Q \) の方向の変化を示す。基準解は流量が軸方向に約 13%変化する。一方、2次元 UMI シミュレーションの流量は軸方向に一定であり、ドップラ速度の誤差 \(e_{v_FB} \) が最も小さくなるように流量推定を行った場合、1.93×10^{-3} m/s の推定結果が得られた（図の実線）。

\[Q = 1.93 \times 10^{-3} \text{ m}^3/\text{s} \]

\[Q = 2.03 \times 10^{-3} \text{ m}^3/\text{s} \]

\[Q = 1.83 \times 10^{-3} \text{ m}^3/\text{s} \]

Fig. 3 Flow rate at each x-position.

\[(a) \text{ Ordinary simulation (} K_c = 0 \text{)} \]

\[(b) \text{ UMI simulation (} K_c = 100 \text{)} \]

Fig. 4 Space-averaged error norms of Doppler velocity at each x-position.

4. 結言

本研究では、複数の流量について2次元 UMI シミュレーションを行い、基準解との流量差が計算精度に与える影響を検討した。速度ベクトル誤差は流量が一致する領域で計算精度が改善されたが、ドップラ速度誤差は基準解との流量差が明確な相関がないことが明らかとなった。今後、流量推定の手法について更なる検討を進める必要がある。

参考文献

(2) 加藤ら, 他 6 名, 機論, 21 (2010), 113-114.