F1-5 細胞内代謝・シグナル伝達を実装可能な血小板細胞シミュレータ基盤モデル開発

Development of basic model of platelet cell with intracellular metabolism and signal transduction

田島 誠一，川原 仁志（伊藤忠テクノソリューションズ株式会社）、市村信哉（東京大学医学部）

Key Words : platelet,simulation,metabolism,signal transduction

1. はじめに
我々は次世代生命総合シミュレーションソフトの研究開発において、血小板の特徴的生理機能である血管損傷部位への接着凝集をシミュレートするため、血漿流れ、血小板接着、血小板の活性化の相互作用を考慮した基盤モデル開発を行っている。現在までに先行研究を参照しつつ、血小板を球状粒子として接着に粘弹性パネルモデルを用いるモデルを開発し、凝集の再現に成功した[2]。一方、より現実に近いシミュレーションの実現には、細胞膜上の接着糖蛋白の分布と細胞内の活性化機構のモデル化が重要と考えられる。そこで本報では上記モデルを拡張し、細胞膜表面における接着糖蛋白の分布、および細胞内部のシグナル伝達とエネルギー代謝に基づく血小板活性化を考慮したモデルを検討する。

2. 血小板シミュレータ基盤モデルの拡張
2.1 血小板の運動
細胞膜と内部を表現するため、血小板を剛体として取り扱う。血小板の変形は無視する。剛体の運動方程式は以下のようにになる。

\[
\frac{dp}{dt} = F \quad (1)
\]

\[
\frac{dN}{dt} = dN \quad (2)
\]

ここで \(p = Mv\) は運動量、\(v\) は重心の並進速度、\(M\) は血小板細胞の質量、\(L = 10\) は中心周りの角運動量、\(I\) は慣性テンソル、\(\omega\) は角速度ベクトル、\(F\) は外力、\(N\) はトルクである。外力 \(F\) は流体力 \(F_x\)、粘性力 \(F_y\)、接着力 \(F_z\) の和である。これらの外力の評価には、血小板表面に接触判定球 [3] を配置し、接触力と接着力の評価には粘弾性パネルモデルを用いる。血漿流れから受ける流体力は判定球からの流体の相対速度の二乗に比例するものとする。

2.2 血小板の接着・凝集
血小板は、細胞膜上の複数種の糖蛋白が血漿内のvon Willebrand因子（VWF）などの粘着蛋白を介して架橋反応することにより、損傷部位へ接着・凝集する[4-7]。本報では、損傷部位への初の粘着を起こす糖蛋白GPIbと、膜上に最も多く存在するGP IIb/IIIaを考慮する。このとき血小板凝集機構を次のように仮定する。

1) 損傷部位に結合したVWFとGPIbが接着
2) GP IIb/IIIaが活性化し結合力を持ち
3) 活性化GP IIb/IIIaにより損傷部位に強く接着
4) 血小板間でGPIbまたはGP IIb/IIIaで結合

膜糖蛋白の分布と接着力の評価には接触判定球を用いる。

血小板でGP IIbは細胞膜に局在しているため接触判定球の一部を、GP IIb/IIIaは互いに存在する位置とする。

接着力の評価には、接触力と同様に粘弹性パネルモデルを用いる。

2.3 血小板のシグナル伝達と代謝
血小板の膜糖蛋白の活性化は様々な経路を巡る[8, 9]。本報ではGP IIb/IIIaの活性化は損傷部位へのGPIbの結合により惹起されるとする。すなわち接着したGPIbの位置においてシグナル伝達物質が生成され、これら反応することによりGP IIb/IIIaは活性化する。また血小板の活性化とはエネルギー消費を伴うシグナル蛋白リン酸化反応の蓄積と理解できる。これを考慮するため、GP IIb/IIIaは2つの活性化状態を持つ、活性化シグナルの反応により一次活性体に、ATPの消費を伴う反応により二次活性体に変化するとし、さらに二次活性体から一次活性体へ戻る過程を設ける。またエネルギー代謝は、解糖系とミトコンドリアによるATP生産を考える。ただし解糖系によるものは細胞膜で、ミトコンドリアによるものは細胞中心部で起こるとし、糖および中間代謝物は無視する。以上よりGP IIb/IIIaの活性化反応モデルは次のように記述できる。
拡散係数

(6)

* ミトコンドリア外膜

(7)

[M] は活性化シグナル、[GP₀] [GP₁] [GP₂] はそれぞれ GP Ⅱ b/Ⅲ a の非活性体、一次活性体、二次活性体、[ATP]、[ADP] は ATP、ADP の濃度を、k₁、k₋₁ は反応速度を表す。血小板細胞内反応拡散系は以下のように記述できる。

(8)

(9)

(10)

(11)

(12)

(13)

3. 計算例

血小板を最大流速 2000 μm/s の平行平板流れ、また平板下面全体を損傷部位として、接着機能と細胞内シグナル伝達・代謝の相互作用について検討した。このとき壁面におけるせん断速度は 600 s⁻¹ となる。血小板形状は長軸 2 μm、短軸 1 μm の楕円体とし、細胞群初期濃度を [GP₀]=1.0 μM、[GP₁]=0.6 μM、[ATP]=0.5 μM、[ADP]=0.5 μM、拡散係数はすべて 5.0×10⁻⁷ m²/s とし、k₁=1.0×10⁻⁴ M⁻¹s⁻¹、k₋₁=1.0×10⁵ M⁻¹s⁻¹、k₂=1.0×10⁷ M⁻¹s⁻¹、k₋₂=1.0×10⁷ M⁻¹s⁻¹、k₃=5.0×10⁵ M⁻¹s⁻¹、k₋₃=5.0×10⁵ M⁻¹s⁻¹、k₅=1.0×10⁵ M⁻¹s⁻¹ とした。

図 2 に GP I b α が存在する接合判定球の領域内にある細胞膜表面セルの平均濃度の時間変化を示す。図 3 に壁面に接着している細胞膜表面積の時間変化を示す。図 2 から活性化シグナルが 2 度放出され、GP I b α が接着したことが分かった。また活性化 GP I b/Ⅲ a の増加とともに ATP 濃度は減少、濃度平衡に近い速度で消費されている。図 3 では、時間の経過とともに接合面積は増加しており、GP I b/Ⅲ a の活性化が表現されている。0.04 秒で接合面積は一定となり、血小板は壁面に固定される。0.04 秒以前に接着面積が大きく変化するが、この間はシグナル伝達により活性化 GP I b/Ⅲ a を増やしつつ、接着・脱離を繰り返して移動している過程であり、血小板のテザリングが表現されている。

4. まとめ

血小板を剛体仮定し、接合判定球を用いることで細胞内物質分布と膜糖蛋白の分布を考慮し、また新たにシグナル伝達を伴う膜糖蛋白の活性化反応モデルを構築することにより、血小板と血小板の接着・活性化の相互作用を表現可能なモデルを開発した。今後は接着力のせん断速度依存性考慮など接着モデルの精緻化、反応モデルの精緻化を行い、より現実に近い形での血小板の発生と集団形成の脱離過程の再現を目指す。また現実に近いシミュレーションでは大規模化は必須であり、ベクスケールコンピュータ搭載を目指し大規模並列計算を試行していく。

文献

1) Miyazaki H., and Yamaguchi T., Biorehology, 40,265-272, 2003
2) 岡川仁志, 後藤敬之, 末松幸, 計算工学講演会論文集, 12, 2007
3) 牛島善明, 福谷彰, 牧野伸, 福木家久, 冬野製造論文集, 10,139-146, 2007
8) 小野 洋, 尾崎勝雄, 坂本康俊, 鎌田・核酸・酵素, 43, 1863-1869, 1998
9) S.M. Jung, M. Moroi, J. Biol. Chem. 275, 8016-8026, 2000