くりこみ群分子動力学法による摺動の計算機実験

Computer Experiment of the Sliding by Renormalization Molecular Dynamics Method

広瀬 良太・住友重機械工業株式会社
Ryouta Hirose, Sumitomo Heavy Industries, Ltd,
高橋 宽明・住友重機械工業株式会社
Hiroaki Takahashi, Sumitomo Heavy Industries, Ltd,

Key Words: Renormalization Molecular Dynamics Method, sliding, friction coefficient

くりこみ群分子動力学（Renormalized Molecular Dynamics：RMD）法は、従来の分子動力学（Molecular Dynamics：MD）法では計算規模の問題から不可能であると考えられているマクロスコピックな解析が可能である。本論では RMD 法を用いて流体の存在する

\(\frac{1}{n} \text{を klein} \)の考え方を MD 法に適用することにより RMD 法を開発した[1]。以前の報告[2][3]において、我々は RMD 法がマクロ系に対する弾性解析や熱流体解析に応用可能であることを示した。

本論では RMD 法を Ra≈0.1(μm)の二つの平面の摺動の計算機実験に適用した。摺動板にかかる摺動方向に対して垂直方向の力を変化させて摺動し、その時の摺動方向にかかる力を得ることで、摩擦係数の圧力依存性を得ることができた。

1. はじめに

我々はくりこみ群[1]の考え方を MD 法に適用することにより MD 法の利点を保持しつつも計算効率を飛躍的に向上させることができる RMD 法を開発した[1]。以前の報告[2][3]において、我々は RMD 法がマクロ系に対する弾性解析や熱流体解析に応用可能であることを示した。

本論では RMD 法を Ra≈0.1(μm)の二つの平面の摺動の計算機実験に適用した。摺動板にかかる摺動方向に対して垂直方向の力を変化させて摺動し、その時の摺動方向にかかる力を得ることで、摩擦係数の圧力依存性を得ることができた。

2. くりこみ群分子動力学法

2-1 くりこみ群変換

実際の系が体積 \(V=L^3 \)、原子数 \(N \)を持つとする。この系にくりこみ群を適用し、縮小された相似な系 \((L', N') \)を作る。

\[
L' = L a^{-1} \quad N' = N a^{-3}
\]

(1)

ここで \(a \) は縮尺比である。

くりこみに際し、物理量は次のようにスケーリングされる。

\[
m \rightarrow m' = m a \quad \phi \rightarrow \phi' = \phi a
\]

(2)

ここで \(m \) は質量、\(\phi \)は原子間ポテンシャルである。また、変数は次のようにスケーリングされる。

\[
q \rightarrow q' = q a^{-1} \quad \dot{q} \rightarrow \dot{q'} = q a^{-1}
\]

(3)

ここで \(q \) は座標である。

くりこみ変換によって時間はスケーリングされない。しかし時間刻み \(dt \) はくこまめを前の \(a \) 倍に取ることが可能である。

3. 計算機実験条件と結果

3-1 計算機実験条件

本論では RMD 法を用いて Ra≈0.1(μm)の二つの平面の摺動の計算機実験を実施した。RMD での計算機実験用のモデルの詳細を Fig.1 に示す。モデルは VOXELCON（株式会社くいんど）のプリプロセッサ機能を利用することで作成した。VOXELCON は現在用いられている CT 画像や CAD からの STL データをダイレクトにモデル化し解析・計測に利用可能

Fig.1. Analysis model (a) Overall view (b) XY sectional view
\[
\begin{align*}
\phi &= 4\varepsilon \left[\frac{\sigma}{r-d} \right]^{12} - \left(\frac{\sigma}{r-d} \right)^{6} + \varepsilon \left(r \geq 2r\sigma + d \right) \quad (4) \\
\phi &= 0 \quad \left(r > 2r\sigma + d \right)
\end{align*}
\]
さらにボテンシャルパラメータは粘度が1.2×10^{-2}[Pa·s]程度の流体を想定し設定した。

\[\varepsilon = 5.58 \times 10^{-21} (J/k) = 2.64 \times 10^{-18} (m) \quad (5) \]
質量は2.39×10^{-23}[kg]とした。
また弾性体部分の粒子配置は1cc構造としており、その弾性体粒子間ボテンシャルはばねのボテンシャルとした。

\[\phi = \frac{1}{2} k (r - r_s)^2 \quad (6) \]
さらにボテンシャルパラメータkはヤング率208(GPa)の弾性体を想定し設定した。

\[k = 1.32 \times 10^5 \quad r_s = 5.99 \times 10^{-10} \quad (7) \]
質量は密度が7800(Kg/m³)となるように1.19×10^{23}(kg)とし、弾性体部分は速度スケーリング法によって温度300(K)に温度制御されている。

Fig.1にて赤く示した力をかける部分の粒子は

\[M \frac{dV}{dt} = F_{ext} - \Gamma V + \sum f_i \quad (8) \]
の運動方程式を解くことで、剛体とし変形せず、回転しないように設定した。ここでF_{ext}は外力（加速度方向に力や慣性力）であり、\sum f_iは力をかける粒子にかかる相互作用力の和である。

Table 1に本論文におけるご動の計算機実験条件の圧力PとF_{ext}、\Gammaについて示す。圧力が1-1000(MPa)となるようにF_{ext}のy=0.00025-0.25(N)と変化させた。

3-2 結果と考察
Fig.2に圧力Pに依存するη/V/Pと摩擦係数\(\mu\)の関係のグラフを示した。\(\eta/V/P\)はくとりこに依存して変動である。この結果より、Pが250(MPa)以上と高い場合（\(\eta/V/P\)：小）、\(\mu\)は高く、Pの変化に対して大きな変化はない。Pが10(MPa)～250(MPa)の場合、\(\mu\)は小さくなるがって\(\mu\)も小さくなる。またPが10(MPa)以下では、Pの変化に対する\(\mu\)はほとんど変化しない。Fig2の結果とストライビック曲線[5]と比較すると、250(MPa)～境界潤滑領域、10(MPa)～250(MPa)は混合潤滑領域、10(MPa)は流体潤滑領域に相当すると考えられる。また、Fig3に各圧力でのスナップショットを示した。この結果より250(MPa)以上では潤滑面同士が接触しており、10(MPa)以下では潤滑面が浮き上がり、常に流体が介在していることが確認された。このことからも、ストライビック曲線の各潤滑領域に相当するという結果は妥当であると考えられる。

4. 結論
本論ではRMD法を用いてご動の計算機実験を実施し、ストライビック曲線と傾向が一致する摩擦係数の圧力依存性を得ることができた。これらの結果からマクロ的な弾性・流体連成解析におけるRMD法の有効性が実証された。
今後はさらに機構・弾性・流体連成や変動量・流体連成解析への実施を予定している。

参考文献
[1] Leo P Kadanoff, STATISTICAL PHYSICS Statics, Dynamics and Renormalization, World Scientific, p293