計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-0407
会議情報

バイオガス発電施設を対象としたデジタルツイン改善システムの開発
菊地 亮太*谷村 あゆみ石坂 丞二功刀 亮牧田 晟洋河野 敬行小林 秀佑戸村 啓二
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study proposes a data-driven approach to support hypothesis formation aimed at improving the predictive accuracy of digital twin systems. By applying Lasso regression, the research successfully identifies key explanatory variables and clarifies the factors contributing to prediction errors in a methane fermentation plant—a chosen use case. The study demonstrates that the proposed approach can potentially enhance prediction accuracy by up to 17% when the suggested hypotheses are implemented in the digital twin system. Furthermore, these hypotheses undergo validation through a Human-in-the-Loop process, ensuring their practical applicability. The findings highlight the significance of hypothesisdriven methodologies in optimizing industrial processes and suggest broader applicability across various fields, including other industrial and bioengineering domains.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top