204 Ni-Ti形状記憶合金薄膜の応答性に関する研究

The Response Characteristics of Ni-Ti Shape Memory Alloy Thin Film

〇 本田友伯（徳島大[院]） 正 高木均（徳島大）
正 三澤弘明（徳島大） 学 久保豊和（徳島大[院]）

Tomotaka HONDA, The University of Tokushima, Graduate Student,
2-1 Minamijosanjima-cho, Tokushima
Hitoshi TAKAGI, The University of Tokushima
Hiroaki MISAWA, The University of Tokushima
Toyokazu KUBO, The University of Tokushima, Graduate Student

Key words: Ni-Ti Alloy, SMA Thin Film, Reversible Shape Memory Effect, Sputter-Deposition

1. 論言
近年, 医療機器や携帯電話、集積回路などの精密機器の軽量化、小型化が急速に進んでいる。そして、その内部に用いられる部品に対する小型化の必要性から、形状記憶合金のマイクロアクチュエータへの応用が期待されている。特に、Ni-Ti合金スパッタ薄膜を使用した研究が盛んである。しかし、Ni-Ti形状記憶合金薄膜のマイクロアクチュエータとしての特性は不明な部分が多い。加えて、スパッタ法が確立したのは比較的最近で実用例1)もごく僅かである。

そこで、本研究では実用化の可能性が高く、二方向形態記憶効果1)をもつNi-Ti形状記憶合金の薄膜を作製し、特性評価を行った。ここに示す「二方向」は加熱・冷却に伴う自発的な可逆形状記憶効果を意味する。また、薄膜の特性評価については、アクチュエータへの応用に重要になると考えられる応答性を注目し、振幅、応答波形などの応答に及ぼす加熱・冷却条件の影響について報告する。

2. 実験方法
2.1 二方向形態記憶合金薄膜の作製
R.F.マグネットロングスパッタリング装置を用いて、Ni-Ti合金を鋼板上に厚さ5μmで蒸着させた。蒸着後、Ni-Ti薄膜を銅箔と共に長さ15mm、幅2mmの矩形状に切断した後、硝酸を用いて銅箔を溶解した。作製した薄膜は石英ガラスで平板形に拘束し、真空雰囲気で750℃×10min保持した後、冷水で急冷した（溶体化処理）。その後さらに、円筒形に拘束してひずみ0.5%を与えた状態で真空雰囲気中、400℃×24hの時効処理を行った。

2.2 応答性の測定
測定は片持ちばりの状態で行った。薄膜は、はり長さが20mmとなるようにスライドガラスで挟み、プラスチック板を用いて固定した。そして、上部からのランプブレーサと4つ穴シャッターを用いて加熱のON・OFFを行い、薄膜を駆動させた。このとき、CCDレーダ変位計を用いて薄膜先端から1mmの部分の変位を測定し、オシロスコープで波形を観察した。

また、応答性に及ぼすデューティ比の影響を調べるため、穴部の大きさが異なる4つ穴シャッターを数枚用意した。ここでは、デューティ比とは加熱・冷却の周期における加熱時間の割合とした。

3. 結果および考察
3.1 応答性に及ぼす加熱条件の影響
応答性に影響を及ぼす因子の1つとして加熱条件に着目し、応答性の測定を行った。図1～図3に振幅と周波数の関係を示す。図1はランプ出力を、図2、図3はデューティ比を変化させて測定した結果である。

日本機械学会講演論文集 No.035-1（'03-3，中国四国支部，第41期総会・講演会）

- 45 -
このように、低周波数と高周波数で最適な加熱条件は異なり、高周波数の方が強い加熱を必要とした。これは、高周波域の加熱効果が低周波域よりも弱くなるためと考えられる。即ち、周波数の上昇に伴って回転シャッターの閉開時間は短くなるため、加熱に要する時間も短くなる。よって、薄膜は十分に加熱されずに冷却へ移行するため、冷却時の冷却時の変位差（振幅）が減少する。したがって、加熱強さを一定と仮定して周波数を上昇させた場合、加熱効果は低下するため、低周波域での応答性を維持するためには加熱強さを強くする必要がある。

3.3 高速応答性

続いて、本実験で使用した薄膜の最高応答周波数に注目すると、ランプ出力を5.93W（一定）とした場合、300Hzの周波数で応答することを確認した。

応答の信頼性を証明するため、そのときの応答波形を図5に示す。振幅は約1μmと微小であるが、確実に300Hzで応答しているのが分かる。したがって本研究により試作した薄膜は周波数300Hzで応答可能であるといえる。

4. 結言

以上の実験結果をまとめると以下のようになる。
①ある特定の加熱条件（ランプ出力5.90W、デューティ比50%）としたときに、大きな応答振幅が得られるが、それ以外の条件では応答振幅が減少する。
②低周波域と高周波域では最適な加熱条件が異なるため、周波数の上昇に伴って任意に加熱条件が変更可能であれば、高周波域における応答振幅の増大が期待できる。
③①の特定条件のとき、300Hzの高速応答が可能である。

参考文献