208 サンドイッチ構造を有するラミー麻織物複合材料の作製と強度評価

Development and strength evaluation of ramie textile composites with sandwich structure

○学 原口憲樹（山口大・院） 学 黒瀬司（山口大・学）
正 合田公一（山口大） 正 野田淳二（山口大） 正 大木順司（山口大）

Key word: Sandwich structure, Textile, Ramie yarns, Bending strength, Impact strength, Ammonia treatment

1 結 言
環境問題が地球規模で問われる現在、環境負荷の大きいGFRP（Glass Fiber Reinforced Plastics）等の繊維強化複合材料の開発と、リサイクルシステムの確立が課題となっている。そのため、ガラス繊維の代替材料として天然繊維を用いた複合材料の研究・開発が進められている。著者らの過去の研究により、強化材にラミー麻織物を用いた複合材料について、剪断特性に及ぼす織維密度の影響が明らかにされた。さらに天然繊維のラミー麻は繊維工業の分野で形状安定性（防縮性、防縮性）の向上を目的として行われる加工である液体アノニア処理で高強化が可能となり、その効果が複合材料においても発揮されることが明らかになった。ところで、近年、航空機や自動車などに軽量かつ剛性に優れたサンドイッチ構造が使用されている。サンドイッチ構造体には、上下表面（以下、表面材と称す）にガラス繊維をはじめとする高剛性材料が使用されており、曲げ剛性や曲げ強度に優れた特性を示す。

そこで本研究では、表面材に織物密度を変化させた平織ラミー麻および液体アノニア処理を施した平織ラミー麻を用いてサンドイッチ構造を有する複合材料を作製した。内部の1層（以下、心材と称す）には表面材と心材を一体成形することが可能で、発泡剤として比較的容易にポリウレタンフォームを用いた。このサンドイッチ複合材料について曲げ試験および衝撃試験を実施し、サンドイッチ複合材料に及ぼす織物密度の影響および液体アノニア処理の影響を調査した。さらに、表面材だけの材料を作製し、引張試験を実施し、サンドイッチ複合材料の強度特性と表面材の強度特性の関係を調査したので報告する。

2 実験方法
2.1 供試材料 強化材にはラミー麻織物からなる織物（トスコ（株）製、16番手5本撚り）を構成する。スラブ（株）製、厚さ3mmを用いて平織りにしたものを利用した。マトリックスにはポリウレタン（住化バイエルウレタン（株）製、SBU）ポリウレタン H539（応調整品）およびイソシアネート（住化バイエルウレタン（株）製、SBI イソシアネート 3037）を2:3の重量比で混合し、撹拌させたものをポリウレタンフォームとして用いた。これらを用いて、50℃で湿った金型（縦220mm、横220mm、厚さ8mm）の中に強化材とエンカマット強化材の3層に積層させ、ポリウレタンフォームを金型に流し込み、加圧成形装置を用いてポリウレタンフォームの発泡が終わるまで荷重を加え続けた。以上で作製したサンドイッチ複合材料から曲げ試験片および衝撃試験片を切出し、ここで、表1に作製したサンドイッチ複合材料の強化材に使用した平織ラミー麻の織物密度およびサンドイッチ複合材料の名称を示す。

<p>| Table 1 Material components. |</p>
<table>
<thead>
<tr>
<th>Treatment condition</th>
<th>Specimen type</th>
<th>warp × weft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>UT(9×9)</td>
<td>9/inch×9/inch</td>
</tr>
<tr>
<td></td>
<td>UT(9×17)</td>
<td>9/inch×17/inch</td>
</tr>
<tr>
<td></td>
<td>UT(14×14)</td>
<td>14/inch×14/inch</td>
</tr>
<tr>
<td></td>
<td>UT(3×35)</td>
<td>3/inch×35/inch</td>
</tr>
<tr>
<td>Ammonia treated</td>
<td>LAT(3×35)</td>
<td>3/inch×35/inch</td>
</tr>
</tbody>
</table>

2.2 液体アノニア処理 液体アノニア処理は日清製（株）の連続式液体アノニア処理機にて行なった。液体アノニア処理温度は-30℃の液体アノニア中に麻織物を浸す処理のものである。液体アノニア処理平織ラミー麻を強化材にしたサンドイッチ複合材料の織物密度および名称を表1に追加して示す。

2.3 試験方法
2.3.1 3点曲げ試験 曲げ強度および曲げ弾性率を3点曲げ治具を用いて小型圧縮弾性試験機（ミネベア（株）製、テクノグラフ T500）により測定した。試験条件はクロスヘッド速度5mm/minで行ない、曲げ試験片は3×5個とした。試験片寸法は長さ180×190mm、厚さ8-9mm、幅15mmである。

2.3.2 シャルビー衝撃試験 シャルビー衝撃試験をアゾン・シャルビー衝撃試験機（EU・アンド・ディ製、CIT−25J−C1）により測定した。試験条件は2.01、7.5J相当の打撃ハンマーを用いて打撃速度2.9m/sで行ない、シャルピー数は10個とした。試験片寸法は長さ80mm、厚さ9-9mm、幅10mmである。

2.3.3 表面材引張試験 引張特性をインストロン型引張圧縮試験機（島津製作所製、オートグラフ IS5000）に測定した。試験条件は引張荷重5mm/minで行ない、サンプル数は5個とした。試験片寸法は厚さ50mm、幅15mmである。

3 実験結果および考察
3.1 サンドイッチ複合材料および織物密度の影響
3.1.1 曲げ特性 UT(9×9), UT(9×17), UT(14×14)およびUT(3×35)の3点曲げ試験から得た曲げ特性の平均値を表2に、それぞれの代表的な荷重・変位曲線を図1に示す。ま
た。表2に示す密度は心材も含んだ材料体全体の密度の測定値である。3点曲げ試験では上部の表面材には圧縮応力、下部の表面材には引張応力が作用し、本研究で使用する材料では表面材の破壊により全体が破壊に至る。表2より、UT(3×35)はUT(9×9)と比べて曲げ強度および曲げ弾性率はそれぞれ59%および25%向上し、4種類の中でも最も優れた曲げ特性を示した。UT(3×35)は他の材料と比べて縦断面が大きいため繊維特有のクラウン部が少なく、試験片の長手方向に配向している縦断面が多くなる。その結果、UT(3×35)は曲げ特性においてその優れた特性を発揮したと考えられる。

Table 2 Bending properties of ramie textile composites with sandwich structure.

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Number of samples</th>
<th>Indenter radius [mm]</th>
<th>Density [g/cm³]</th>
<th>Bending strength [MPa]</th>
<th>Flexural modulus [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT(9×9)</td>
<td>5</td>
<td>5</td>
<td>0.567</td>
<td>23.5</td>
<td>1254</td>
</tr>
<tr>
<td>UT(9×17)</td>
<td>5</td>
<td>5</td>
<td>0.607</td>
<td>28.8</td>
<td>1524</td>
</tr>
<tr>
<td>UT(14×14)</td>
<td>5</td>
<td>5</td>
<td>0.616</td>
<td>26.0</td>
<td>1182</td>
</tr>
<tr>
<td>UT(3×35)</td>
<td>5</td>
<td>5</td>
<td>0.599</td>
<td>37.4</td>
<td>4449</td>
</tr>
<tr>
<td>UT(3×35)</td>
<td>3</td>
<td>6.92</td>
<td>0.660</td>
<td>53.1</td>
<td>4449</td>
</tr>
<tr>
<td>LAT(3×35)</td>
<td>4</td>
<td>6.92</td>
<td>0.590</td>
<td>35.8</td>
<td>2897</td>
</tr>
</tbody>
</table>

Fig.1 Typical load-displacement diagrams for bending test.

3.1.2 衝撃特性 UT(9×9), UT(9×17), UT(14×14)およびUT(3×35)のシャルビー衝撃試験から得た衝撃価の平均値を表3に示す。表3より、衝撃特性においてもUT(3×35)が最も劣った値を示した。つまり、表面材の繊維密度を変えることでサンドイッチ複合材料において強度向上だけでなく、高強度化も可能となることが明らかになった。

Table 3 Impact properties of ramie textile composites with sandwich structure.

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Number of samples</th>
<th>Density [g/cm³]</th>
<th>Charpy impact strength [kJ/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT(9×9)</td>
<td>10</td>
<td>0.638</td>
<td>6.11</td>
</tr>
<tr>
<td>UT(9×17)</td>
<td>10</td>
<td>0.617</td>
<td>9.06</td>
</tr>
<tr>
<td>UT(14×14)</td>
<td>10</td>
<td>0.634</td>
<td>15.3</td>
</tr>
<tr>
<td>UT(3×35)</td>
<td>10</td>
<td>0.665</td>
<td>38.8</td>
</tr>
<tr>
<td>LAT(3×35)</td>
<td>10</td>
<td>0.593</td>
<td>28.5</td>
</tr>
</tbody>
</table>

3.1.3 応力集中の影響 曲げ試験後の試験片を観察したところ、UT(3×35)に荷重点近傍で圧子による応力集中が原因で局部的な座屈が生じた。そこで、圧子にアルミを巻き、圧子の半径を5mmから6.92mmへと変えて再度UT(3×35)について曲げ試験を実施した。結果を表2に追加して示す。また、曲げ弾性率はアルミの影響を考慮し、圧子の半径が5mmの場合のものを載せた。表2より、圧子を大きくすることで曲げ強度は42%増加した。また、荷重点近傍の局部的な座屈の発生も抑制された。つまり、サンドイッチ複合材料のねじ破壊モードが局部的な圧縮破壊から表面材の引張破壊に変化することでUT(3×35)の本来の強度特性が発揮された結果であると考えられる。

3.2 サンドイッチ複合材料に及ぼす液体アンモニア処理の影響

3.2.1 曲げ特性 LAT(3×35)の3点曲げ試験から得た曲げ特性の平均値を表2に追加して示す。なお、圧子による応力集中を考慮し、圧子の半径は6.92mmとし、曲げ弾性率は圧子の半径が5mmの場合をもとめた。表2より、曲げ強度および曲げ弾性率は圧子の半径が6.92mmの場合のUT(3×35)と比べてともに低下している。液体アンモニア処理を施したラミナは引張強度および引張ひずみは向上するがヤング率は低下する。すなわち、曲げ弾性率の低下は繊維系の応力集中が低下すると考えられる。しかしながら、表面材の引張強度が向上しているにも関わらず曲げ強度は低下したため、曲げ強度は圧縮側の応力分布の影響があるのでないと考えられる。

3.2.2 衝撃特性 LAT(3×35)のシャルビー衝撃試験から得た衝撃価の平均値を表3に追加して示す。表3より、LAT(3×35)のシャルビー衝撃価はUT(3×35)と比べて27%低下した。この結果より、液体アンモニア処理により高強度化された繊維を表面材に用いた場合、その効果がサンドイッチ複合材料に反映されないことが明らかになった。これは試験片の破壊形態がUT(3×35)とLAT(3×35)ではまったく異なったためである。すなわち、LAT(3×35)は表面材の剝離が発生しており、この現象はUT(3×35)では見られなかった。つまり、液体アンモニア処理によって表面材-心材間の接着力が低下したため、シャルビー衝撃価が低下したと考えられる。

3.3 表面材引張特性 UT(9×9), UT(9×17), UT(14×14)およびUT(3×35)の引張試験から得た引張特性の平均値を表3に示す。また、添え字のEは表面材を意味する。これらの引張特性の変化は3.1.2項で述べたように、縦断面および縦断断面に起因すると考えられる。これより、表面材の引張特性がサンドイッチ複合材料の強度特性に大きく影響を与えていることが示唆されるが、サンドイッチ複合材料との定量的な関係は未だ見出せておらず、現在調査中である。

Table 4 Tensile properties of ramie textile composites.

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Number of samples</th>
<th>Density [g/cm³]</th>
<th>Tensile strength [MPa]</th>
<th>Young's modulus [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT(9×9)</td>
<td>5</td>
<td>0.680</td>
<td>29.9</td>
<td>2.49</td>
</tr>
<tr>
<td>UT(9×17)</td>
<td>5</td>
<td>0.732</td>
<td>51.4</td>
<td>3.52</td>
</tr>
<tr>
<td>UT(14×14)</td>
<td>5</td>
<td>0.801</td>
<td>40.5</td>
<td>3.06</td>
</tr>
<tr>
<td>UT(3×35)</td>
<td>5</td>
<td>0.746</td>
<td>97.3</td>
<td>6.56</td>
</tr>
</tbody>
</table>

参考文献
2) 中村理恵, 野村宏樹, 合田公一, 野田淳二, 大木順司, 材料, Vol.58 No.5 (2009) 掲載予定

[結論, 謝辞, 省略]