タンク隅角部浮き上がり挙動に対するピークひずみ算定式

Calculation of Peak Strain at Shell to Annular Joint of the Oil Tank under Up-lifting

○正 伊木 聡 (JFE-S) 正 吉田聖一 (高知専門)
正 関谷隆英 (大阪) 光田 司 (JGMEC)
Shoichi IGI, JFE Steel, Kawasaki-cho, Chuo-ku, Chiba
Kouchi, YOSHIDA, Kouchi National College of Technology
Takahide SAKAGAMI, Osaka University, Tsukasa MITSUTA, JGMEC

Since the past decade, diagnostics evaluation method for the oil tank under ultra low cycle fatigue was continuously discussed at the committees in Japan High Pressure Institute (JHPI). This paper reports the calculation formulas of peak strain at shell to annular joint of the oil tank under up-lifting. These formulas are developed in order to connect with the already reported low cycle fatigue crack growth evaluation method.

Key word: Oil tank, Shell to annular joint, Peak strain, Up-lifting

1. 緒言

近年、国内外で多くの供用適合性 (Fitness-for-Service: FFS) 評価規格が制定され、圧力容器など多くの分野で用いられている。ただし、日本のように高レベルの地震動を考慮した条件での評価となると、十分に適用できるとは言えない状況にある。

大地震により高レベルの水平動を受けた平底円筒タンク（以下タンク）は図1に示すような片浮上ロッキング挙動を呈することが知られている。このため、タンクの側板とアニュアル板との隅角溶接部（隅角部）は、大きな繰返し塑性ひずみを受ける。この隅角部にかかる圧力が変動すれば、塑性ひずみの繰返しにより筒体の局部不均一性・破壊が生じ、最終的には内容物の漏洩が懸念される。日本高圧力技術協会（JHPI）では長期荷重タンクの FFS 評価基準案の策定を行っているが、このような大きな塑性ひずみ繰返しのもとでの疲労・破壊発生の予測方法については既報にて報告した。

疲労・破壊成長予測に用いる隅角部ひずみの算定手法に関しては、これまで FEM による詳細解析あるいは単純破壊性材料を仮定したモデルで求めていた。本報告では、実際の材料特性を模擬したパイラニア型の硬化則を用いたモデルで簡易解析により、隅角部ひずみを算定する手法について検討を行った。

2. タンク浮上り挙動に対するピークひずみ算定式の検討

高レベルの水平地震動を受けると、図1に示すような片浮上ロッキング挙動を呈する。図2は本報告で示すように隅角部アニュアル板を静圧下の単位幅で片浮上モデルとして検討を行った。

はり端部（θ=0）での、変位をδ、たわみ角をθと表わす。はり端部のたわみ角θと式の関係を考察する。はり端部のたわみ角θは、最も簡単な場合として、θ=0の場合を一般に考えられる。弾性枕について、端部モーメントMa、端部抵抗カL、浮上り長さLの関係における曲げモーメントM(x)は長さをLで正規化した(3)式で表される。

上記で、パイラニア型の弾性枕を考慮するため図3のように、弾性枕と塑性域を次式で近似する。

式 (4) を書き替えて、

日本機械学会第12回設計工学・システム部門講演会講演論文集 [05-8-3～5,札幌]
ここで、\(\lambda = \frac{F}{E + F} \) と定義する。

図4に単位幅矩形断面ひずみが曲げ、弾塑性ひずみが発生している状態を考える。

\[
M = 2\frac{y}{y_p} \sigma_y \int_{y_p}^{y} dy + 2\frac{y}{y_p} \int \lambda \sigma_y \left(\frac{y}{y_p} + \sigma_y (1 - \lambda) \right) dy
\]

(7)式を整理して,

\[
M = \frac{\sigma_y t^2}{4} \left[\frac{2}{3} \lambda \left(\frac{2}{\eta} \right) + (1 - \lambda) \left(1 - \frac{2}{3} \eta^2 \right) \right]
\]

(8)式

ここで、\(\eta = \frac{y}{y_p} \) あるいは\(\rho = \frac{y}{y_p} \)で表される弾性限界断面比である。

これより、線形硬化型応力・ひずみ関係をもつ材料の単位幅矩形断面直面はより曲げモーメントは、弹性限界モーメント \(M_y \) を用いて以下のように表される。

\[
M = \frac{3}{2} M_y \left(\frac{2}{3} \lambda \left(\frac{2}{\eta} \right) + (1 - \lambda) \left(1 - \frac{2}{3} \eta^2 \right) \right)
\]

(9)式

ここで、\(M_y \) は \(\frac{\sigma_y t^2}{6} \) で表される。

このとき、単位幅矩形断面直面はより外縁の応力・ひずみは次式で表される。

\[
\sigma_y (1/2) = \sigma_y (1 - \lambda) + \lambda \sigma_y (1/\eta)
\]

(10)式

\[
\varepsilon_y (1/2) = \varepsilon (1/\eta)
\]

(11)式

3. 簡易解析結果

簡単解析は、110000kN 物の平板にロッキング荷重を加え、単位幅矩形断面直面はより曲げ、弾塑性ひずみが発生している状態を想定した。解析対象として、었と、板厚 21mm。板厚が 20688mm、板厚が 0.841 である。