201 熱音響波発生機の振動流れ
（共鳴管出口から流出する流れ）

Oscillatory Flow in Thermoacoustic Sound Wave Generator
- Flow in Tube Outlet -

〇正  川沢政保（日大短大）

Masayasu HATAZAWA, Junior College of Nihon University
7-24-1 Narashinodai, Funabashi-shi, Chiba 274-8501

Key Words: Thermoacoustic Phenomena, Sound Wave Generator, Oscillatory Flow, Intermittent Flow

1. 緒 言
熱から仕事（音波）へ、あるいは仕事から熱へのエネルギー変換が直接できる熱音響現象が注目されている。熱音響機器において、熱音響波発生機（以降、音波発生機という）が重要な役割を果たしている。さらに、エネルギー変換機構において、共鳴管あるいはその中での反射上における振動流れの特徴性が大きく影響することは間違いない。

川沢らは音波発生機の性能向上を目指す研究と並行して、発生する音波の応用について検討している。その一環として熱音響発電を行った。

熱音響発電に先立つ予備実験の過程で共鳴管より流出する流れの特徴性が明らかになった。すなわち、音波発生機の出口直前では、順流・逆流流成分を共に有する振動流れ、下流に位置するにもかかわらず、逆流成分が減少し、やがて一様流に順流成分が重畳された特異流れへと変化する。

ここでは、それらの結果について報告する。

2. 実験装置および実験方法
図1に熱音響波発生機と示す。共鳴管、高温・低温熱交換器、スタックよりなり、共鳴管は、大気温部が外径30mmのSUS304ステンレス管、低温部が内径32mmの普通アクリル管である。高温熱交換器は800℃に及ぶ高温にさらされることがから、酸化を軽減するために特殊製造した。外周には最大発熱量500W、長さ1800mm、外径1.6mmのシース形ヒータを巻き付け、直流電源（110V、6A）により通電し加熱した。低温熱交換器は鋼製であり、外部に設けた鋼製の冷却水路に温度を調整した精製水を流して冷却した。両熱交換器の中央部にφ3mmの穴が55個開けている。また、スタックには、外径2mm、内径1.6mm、長さ80mmのSUS304ステンレス管を180本束ねて用いた。

なお、熱入力は400Wであり、作動気体に大気圧の下の空気を用いて実験を行った。

座標軸は図出入口方向にx、半径方向にyをとった。

また、流れの観察はタフ計測により、速度の測定は定温形熱線風速計によって行った。

3. 実験結果および検討
3.1 顺流・逆流の評価 共鳴管から流出する流れは、出口直前では、下流方向への流れ（順流）および上流方向への流れ（逆流）流成分を有する振動流れになっている。しかし、充分下流方向に位置すると、一様流へと変化する。永・川沢・川中らは、順流・逆流成分が1周期の振動流れに占める割合を評価するために、(1)式で表される平均
Fig.4 Change in velocity downstream along tube axis

速度 $U_{ml}$, $U_{mb}$を提案した。

$$U_{ml} = \frac{\tau_0}{\tau_0} \int_{\tau_0}^{\tau_0} \frac{6}{\tau_0} \left[ \frac{6}{\tau_0} \right] \left( 1 - \frac{t}{\tau_0} \right) dt$$

ここで、$T_p$, $T_b$は振動波長、振動周期の間の平均速度を示す。$T_b$は周期、$u$は軸速度である。

また、振動波長を占める順流・逆流が共に確保されるように、式(2)に示す時間平均速度 $U_p$, $U_b$を提案した。

$$U_{ml} = \frac{\tau_0}{\tau_0} \int_{\tau_0}^{\tau_0} \frac{6}{\tau_0} \left[ \frac{6}{\tau_0} \right] \left( 1 - \frac{t}{\tau_0} \right) dt$$

図2に$f=100$Hzにおける順流および逆流の平均速度分布を示す。図中央部では、管出口直後に順流・逆流ともに見られるが、下流に行くに従い逆流は消減し、順流の平均速度が減少している。

図3に$f=100$Hzにおける各測定位置での時間平均速度の分布を示す。共鳴管出口断面（50.10mm）では順流が管壁の延長線より内側に集中しているのでに対して、逆流が広い範囲から管に流れ込んでいないことがわかる。さらに下流に位置するに従い、逆流は無くなり、時間平均速度分布がより一層一様化している。

3. 2 速度波形の変化

図4, 5は別の装置で行った共鳴管軸および内壁延長線の速度の測定結果を示す。なお、タンデム形等熱線風速計による測定から、速度振幅の大きい方順流、小さい方が逆流であることが確認されている。管出口直後では、順流・逆流成分がともに見られ、特に、逆流成分は逆流成分よりも大きい。これは、流出する際に、周りの空気が巻き込まれ、一方、逆流する際には、空気が周囲から一様に吸い込まれることに起因すると考えられる。

また、下流に位置するに従って、逆流成分は無くなり、下流に順流が重複される脈動流れになっていることがわかる。

4. 結語

熱音響音波発生機から流出する流れは、出口直後では、順流・逆流成分からなる脈動流れであるが、下流に位置するに従って、一様流に順流が重複する脈動流れへと変化する。

参考文献
(2)川沢・野中,低温工学,36-4(2001),204-211.
(3)川沢・渕尾,機論,68-675B(2002),3161-3169.
(4)呉某・川沢・中川,機論,66-646B(2000),1364-1371.