二次元渦対の三次元化に関する可視化実験

Flow Visualization Measurement for Three Dimensional Deformation of Two Dimensional Vortex Pair

Naoto KATASYO, Graduate School of Kitami Institute of Technology, 165 Koencho, Kitami-shi, Hokkaido
Masanori MATSUMURA, Kitami Institute of Technology

Key Word : Longitudinal Vortex Pair, Contraction Flow, Vortex Breakdown, Loop Vortex, Vortex Ring

1. 結言

デルタ翼から発生する翼端渦対を縮流し、渦伸張させるとき、渦対の渦度は増加し、二次元性の強い縦渦対となって流れする(1)。この渦対が有する流れの乱流流と、その外周にテイラー渦のような渦旋軸の三次元渦構造が多数発生し、その後両者は干渉・合体・変形し合いながら流れし、隣り合う翼端渦対が合体し、大きなリング状渦構造に変化する。二次元渦構造の発生には、渦度の増大に伴う流れの不安定性が大きく関与していると思われる。

そこで本研究は、縦渦対の渦度を縮流比によって制御し、これが二次元渦構造の発生・成長および渦対の三次元変形過程に与える影響を明らかにする。

2. 実験装置及び実験方法

図1に実験装置の略図を示す。実験には、回流型水路を用いた。ポンプで循環する水は、整流部を通った後、縮流部で縮流され、水路試験部に流入する。整流部出口(縮流部入口)の流路断面幅は幅Bo=900mm、水深Ho=600mmであり、長さ700mmの縮流部によって流路の幅Bと水深Hは減じ、縮流部出口でB=250mm、H=350mmとなる。座標原点は縮流部出口、すなわち試験部入口の水路断面中央とする。主流方向をx軸、水路幅方向をy軸、水面の高さ方向をz軸とする座標系とした。実験には、二次元性の強い縦渦対を発生させるためにデルタ翼を使用した。デルタ翼は縮流部に設置され、そのx方向位置を変えることによって縮流比を変化させた。実験で使用したデルタ翼は頂角が45°、高さ9.98mm、厚さ3mmの二等辺三角形のアクリル板で、各辺は厚さの影響を少なくするために45度のエッジに加工されている。また、色流脈法で翼端渦を可視化するため、色素を水に放出する直径1mmの穴を作成し、塩化鉄で作成した。色流脈法では、トレーサーとしてウラニンとローガミンを使用した。色素をデルタ翼の両側に設けられた穴から放出し、左右の翼端渦の色が異なるようにした。デルタ翼の先端は水深100mmの位置であり、色素の放出にはマイクロチューブポンプを用いた。

試験部に流入する縦渦の渦度は、水路縮流部に設置したデルタ翼のx方向位置を変えることによって制御する。本研究ではデルタ翼設置位置における縮流部断面積Sと試験部断面積S0の比S/S0を縮流比rと定義し、r=1、2、3、4となる4つの位置にデルタ翼を設置し、それぞれの条件下で縦渦の中心角速度ω、および渦核径d、二次元変形の発生頻度を測定した。次に角速度ωと渦核径dの測定法について図2を用いて説明する。図2はデルタ翼から放出出した色素による流脈と、可視化断面内に水深方向に設置したタングスタン線(φ50μm)から発生した水素気泡を同時に可視化した写真である。この可視化写真は色素によって縦渦中心の位置を確認し、これがタングスタン線上であるときに瞬間的に水素気泡を発生させ、そのt秒後に撮影したものである。従って写真上の気泡の位置は、t秒間の流体の移動距離を表しているので、気泡によって作られるラインは、渦内部の速度分布を示している。ここで、渦中心における気泡ラインの接線の向きから、渦中心の角速度ωを算出することができる。また、dは渦核径を得る位置の水深方向距離と定義した。dは渦核径を相当すると考えられる。
のアーチ渦あるいは渦輪状のループ渦となって流下する場合と、くびれた位置で縦渦が分裂した後、その付近で複雑に乱れた状態が続き、隣り合う縦渦がつなぎ換わることなく流下する場合がある。本研究ではくびれが起こり始め（constriction）位置の頻度、および分裂した後に縦渦がつなぎ換わり（reconnection）、アーチ渦あるいはループ渦が形成される頻度を求めた。

3. 実験結果及び考察
図3に、縦渦の周りに現れたテイラー渦のような渦輪状の渦と縦渦のくびれ状態を示す。また、図4に、渦対の三次元変形過程の一例を示す。図3の渦輪は遠心力の不安定性により発生すると考えられる。渦輪が発生すると図4の①に示すように渦の三次元変形が起こり、②のように渦輪の発生した分裂が次第にくびれ始め、さらに流下する③のようにくびれた部分から分裂し、その分裂した渦対が④のような大きなループ状の渦構造となる。
図5に各縦流比における縦渦の角速度ωと縦渦径dの値を示す。縦流比が大きくなるに従って縦渦対は、縦流の影響を受けωは増加し、d は減少している。
図6に各縦流毎に縦渦の三次元変形過程の発生位置の頻度を示す。縦流比は3分間で数出された回数を示す。r=1 のときでは、多次元変形は起こらず縦渦対は二次元性を保ったまま流下したので、結果は省略する。r=2 では、くびれ開始位置は x=550mm に、分裂位置は x=850mm 付近にピークがあり、縦渦のつなぎ換えはほとんど起こらない。
r=3 では、くびれ開始位置は x=350mm、分裂位置は x=800mm 付近にピークがあり、つなぎ換えは少ない。r=4 では、くびれ開始位置は 300〜350mm、分裂位置は 700mm 付近であり、つなぎ換えは多い。これらのことより、縦流比が大きくなると、くびれ開始、分裂、つなぎ換えの頻度も増加し、くびれ開始位置、分裂位置は上流側に移動することがわかる。これは渦度が増加することで遠心力が大きくなり、渦輪状の三次元渦構造の発生が早まるからであると考えられる。

4. 結言
縦渦は縦流によって渦伸張を受け、渦度が増加するとテイラー渦のような渦輪状の三次元渦構造が多数発生する。この三次元渦構造はかつ渦度が大きくないと発生しない。また、三次元渦構造が発生すると、その部分がくびれ、分裂し、つなぎ換え起こり、大きなループ状の渦となることがある。
渦度が大きいほどくびれ、分裂、つなぎ換えの発生頻度は増加し、くびれ位置、分裂位置は上流側に移動する。

参考文献
(1) 片石・松村・小林、日本機械学会北海道支部第44回講演会講演要集、(2005)、pp56-57。

Fig.3 Vortex ring around longitudinal vortex pair

Fig.4 Three dimensional deformation process of vortex pair

Fig.5 Angular velocity of vortex center and diameter of vortex core

Fig.6 Histogram of constriction, breakdown and reconnection