並列配列近接二円柱の変動流体力

Fluctuating Fluid Forces Acting on Closely Placed Two Side-by-Side Circular Cylinders

正羽二生 博之（北見工大） 正宮越 勝美（北見工大）
○学 中村 隼人（北見工大）

Hiroyuki HANIU, Kitami Inst. Of Tech., Kouentropy165, Kitami
Katsumi MIYAKOSHI, Kitami Inst. Of Tech.
Hayato NAKAMURA, Kitami Inst. Of Tech.

Key Words : Fluctuating Fluid Forces. On Closely Placed. Two Side-by-Side Circular Cylinders

1. 緒論

近接する二次元物体の周りの流れはその間隔によって大きく変化し、流れのスイッチング現象が生じて、変動流体力も大きく変化することが知られている。これまで同径二円柱に関する研究においては、間隙が円柱直径の二分の一付近における変動流体力特性が詳しく調べられているが、極近接領域における詳細報告はほとんどない。本研究においては非常に近接した同径二円柱に作用する揚力変動をロードセルを用いて詳しく調べた。さらには異なった直径の二円柱についても詳しく調べた。特に間隙が円柱直径の0.1倍よりも小さな領域における変動揚力は単独円柱のそれにくらべ大きくならないことが明らかとなったため、この付近における揚力変動の過渡特性を調べた。

2. 実験装置および実験方法

本研究では測定用寸法が400mm×400mmの正方形断面で長さ2300mmの低速吹出し型風洞を使用した。供試物体には直径D1=50mmのロードセル内蔵の真鍮製円柱と、直径D2=50mmとD2=38mmの2本の真鍮製ダミー円柱を用い、平行に設置して実験を行った。二円柱間の間隙をSとし、直径D1の円柱に作用する揚力をロードセルで測定した。また、熱線流速計で二円柱後流の流速を測定した。風洞内の二円柱の設置角度と記号の定義および熱線プローブの測定位置を同様の風洞における実験とはFig.1に、異径の場合はFig.2に示す。本研究では以下の(i)と(ii)の実験を同径二円柱および異径二円柱について行った。

日本機械学会北海道支部 第45回講演概要集（'06.9.30・北見） 79

Fig.1 Schematic view of setup and definition of symbols of same diameter

Fig.2 Schematic view of setup and definition of symbols of different diameter
(i) 二円柱間の間隔 S を変化させ、直径 D の円柱に作用する揚力を測定した。間隔 S を 1.5〜10.0mm の領域では 0.5mm 間隔で、10.0〜100.0mm の領域では 10.0mm 間隔で変化させ、サンプリング周波数fs=100Hz、サンプリングデータ数N=32000 点として測定した。
(ii) 間隔 S を揚力がスイッチング現象を示す値に固定し、揚力と二円柱の隙間流れの y 方向流速との相関を調べた。測定は隙間のすぐ下流の位置で行い、サンプリング周波数fs=1000Hz、サンプリングデータ数N=32000 点とした。

3. 実験結果および考察
3-1. 同径二円柱

Fig. 3 は揚力係数 CL の RMS 値である変動揚力係数σCと二円柱間の間隔 S との関係を示したグラフである。Fig. 3 より、S/D=0.1〜0.2 付近において変動揚力係数が大きく変化しており、S/D が 0.1 よりも小さな領域で揚力変動が急増している。このことから、この領域において流れのスイッチング現象が生じていると考えられる。Fig. 4 は S/D=0.19 における局所揚力係数 CL の確率密度分布 PD を示したものである。Fig. 4 より、PD の分布が 2 つの領域に分かれており、間隙流れの偏圧方向にスイッチングが起きていていると考えられる。

なお PD の分布が 2 つの領域に分かれるのは、S/D=0.1 および S/D=0.2 付近の極限値の領域であった。

3-2. 異径二円柱

Fig. 5 は陽力係数 CL の RMS 値である変動揚力係数σC と二円柱間の間隔 S との関係を示したグラフである。Fig. 5 より、S/D=0.1〜1.0 の領域で変動揚力係数が非常に小さく、流れ場が安定していることを示唆している。一方 S/D が 0.1 より小さな領域で揚力変動が急増しており、S/D=0.1 付近において流れのスイッチング現象が生じているものと考えられる。Fig. 6 は S/D=0.08 における局所陽力係数 CL の確率密度分布 PD を示したものである。Fig. 6 より、PD の分布が 2 つの領域に分かれており、間隙流れの偏圧方向にスイッチングが起きていると考えられる。

4. 結論

- 同径二円柱および異径二円柱の両方の場合において、二円柱の極近接領域において流体力におけるスイッチング現象が見られた。
- 同径二円柱の場合は S/D が 0.1 および 0.2 付近の限られた領域において、異径二円柱の場合には S/D=0.1 未満の領域において流体力のスイッチング現象が見られた。