1. はじめに

ディジタルホログラフィは、参照光と被検物体から生じる物体光をイメージセンサに取り出されることによってホログラムを記録し、数値計算により物体の3次元情報を再生する技術である。この技術は、非干渉、顕微鏡、形状計測などに応用されている。特に形状計測の分野においては、数100μmから数10nmの物体の表面形状を再生しており、有用な方法であることが知られている。

2. 要旨

2.1 研究の背景・目的

二波長ディジタルホログラフィ干渉法は、2つの異なる波長で記録したホログラムを計算機上で干渉させて得られた位相分布から実効波長を用いて物体の表面形状を得る干渉法である[1]。この実効波長を得るために、ホログラム記録時に用いた波長を測定する必要がある。これまで、装置の小型化、低コスト化および測定時間の短縮を目的として、フレネル変換に基づくディジタルホログラフィ再生法における再生画像の画素サイズが波長に依存する性質を利用して、精度を推定した波長差から実効波長を得る方法を提案してきた。しかしながら、この実用化は量子化誤差が大きいという問題があった。本研究では、波長差の推定法の改善を行うことで、量子化誤差の低減を行った。

2.2 理論

波長λ, λi (< λi)で記録したホログラムを計算機上で干渉させるように実効波長を求めることができる。このとき、物体の表面形状は h = (Δλ/2)λにより得ることができる。ここで、Aは実効波長であり、

\[\Lambda = \frac{\lambda_2 - \lambda_1}{\Delta \lambda} \]

と与えられ、式(1)において \(\Lambda = (\lambda_1 + \lambda_2)/2 \) は平均波長、\(\Delta \lambda = \lambda_1 - \lambda_2 \) は波長差である。

フレネル変換に基づくディジタルホログラフィ再生法において、各波長で記録したホログラムの再生面での画素サイズΔi(i=1, 2)はホログラムの画素数N, 画素ビッチp, およびイメージセンサの間距離dとすると、

\[\Delta_i = \frac{\lambda_i d}{N p_i} \]

と与えられ、波長に依存する。2つの画素サイズを一致させることに、一方向波長で記録されたホログラムの周辺に0値のデータを追加するゼロパディング法[2]を適用し、画素数をN+nとして再生することにより、各画素数を整数で得られる。いま、λiにゼロパディング法を適用する場合を考えると、\(\Delta_1 = \Delta_2 \) において、次式が成立する。

\[N + n = \frac{\lambda_i}{\lambda_1} N \]

この式から、実効波長の推定 \(\Delta \lambda \) は式(3)で与えられる。

\[\Delta \lambda = n \Delta \lambda \]

ここで、\(\Delta \lambda = \lambda_1/\lambda \) は波長差分解能である。画素サイズが一致するNの値を求めるために、N値を変えてλiとλの再生像の強度関数を計算する。この関数は画素サイズが一致したときに最大値となり、このときのNの値を式(4)に代入して波長差を推定する。波長λの再生像の強度をIi, 波長λのホログラムをNピクセルでゼロパディングした後の再生像の強度をIj, 各再生像強度の標準偏差をσp, σjとしたとき、2つの再生像の強度関数C(n)は

\[C(n) = \sum_p \sum_q [I_p(q) - \langle I_p(q) \rangle] [I_j(p,q) - \langle I_j(p,q) \rangle] \]

と与えられる。ここで、(pq)は離散座標であり、(pq)は平均を表す。本方法で推定される波長差は波長差分解能によって量子化されるために式(4)は次のように表される。

\[\Delta \lambda = \text{Round} \left(\frac{\Delta \lambda}{\lambda} \right) \]

ここで、Round(−)は四捨五入を表す。本研究では量子化誤差を低減するために式(5)の関数にスプライン補間を適用することに加えて、λiで記録したホログラムでゼロパディングしたときにNの値をマイナスとして扱い、波長差の小さい領域における推定精度の向上を行う。

2.3 実験装置・方法

本研究で用いるレンズリフレクティブ変換光学系をFig.1に示す。
半導体レーザー（Mitsubishi ML101J27, 660nm, 130mW）を光源に、クラシプネジを被検物体に用いた。レーザーの温度は25±0.01℃とし、注入電流 85から200mA の範囲を使用する。このとき、最大2.83nmの波長幅が生じる。物体からd=307mmの位置にCCDカメラ（1920×1040pixels、画素ピッチ4.65×4.65μm²）を配置し、ホログラムを記録する。また、分光器(Ocean Optics HR4000, 分解能0.04nm)を波長測定に使用し、スペクトルの重復波長を使用する。注入電流が85mAときの光源の発振波長λ=659.63nmのホログラムを記録した後、注入電流を1mA間隔で増加させて波長差2.83nmまで23枚のホログラムを取得し、λとして用いた。ホログラムの画素数をN=2^mとして一方のホログラムをnピクセルでゼロパディング後に再生し、もう一方のホログラムの再生像との強度相関を計算する。このときの波長差分解能はΔλ=0.64nmである。

3. 実験結果と考察
3.1 ゼロパディングによる倍率調整
波長差が2.21nmとなる2つのホログラムの再生像の複素係数幅から得られた位相差画像をFig.2(a)および(b)に示す。(a)はn=3のゼロパディングにより倍率調整し、(b)は倍率調整をしていない位相差画像である。倍率調整を行った画像には明確な干渉線が現れており、2つの再生像の画素サイズが一致していることがわかる。

Fig.2 Phase difference images (a) with and (b) without scale adjustment.

Fig.3は各波長差のホログラムにn=5〜10のゼロパディングを行った際の強度相関を示しており、各種マーカーはゼロパディング、各種実験に拡幅精度を上げるためにスプライン補間で内挿した結果を示している。この図において、相関数がピーク値となるnの値を用いて波長差を推定する。

Fig.3 Intensity correlations for each Δλ.

3.2 波長差推定
Fig.4は、推定された波長差および、分光器での測定によって得られた波長差を示している。

Fig.4 Estimation of wavelength difference.

ゼロパディングのみを用いたときの推定値は波長差分解能に制限され、量子化された位置において、その先端では分光器による測定値との誤差が大きくなっている。一方、スプライン補間にした結果は誤差が低減されていることがわかる。

3.3 実効波長の推定
分光器による測定値から算出した実効波長を真値として、推定値から得た実効波長の相対誤差のグラフをFig.5に示す。実験はゼロパディング法のみを用いたときの推定値、破線はスプライン補間にした推定値から算出した誤差を表す。この図において、波長差が小さい場合においてλ=λとなり式(1)が無限大となる箇所は示した。

Fig.5 Relative error of synthetic wavelength.

ゼロパディング法のみで推定した場合、量子化誤差による周期的な増減を繰り返している。一方、スプライン補間にした場合は、波長差が0.41nm以上において相対誤差5%以下で実効波長が得られることが確認できる。これより、本研究で用いた改善法によって、Δλ＜Δλにおける本方法の有用性が期待できる。

4. 結言
本研究では二波長ホログラフィ干涉法において、倍率調整による波長差推定法の改善を行った。ゼロパディング法における改善および、相関数にスプライン補間を適用することによって量子化誤差を低減することができた。

5. 参考文献