408 地中熱ヒートポンプ冷暖房システムの設計ツール開発
Development of a design tool for Geothermal Heat Pump Air Conditioning Systems
学○金野 彩佳(北見工大院) 学 張 駿(北見工大院)
正 佐々木 正史(北見工大) 正 遠藤 登(北見工大)
Ayaka KONNO, ZHANG Chi, Masafumi SASAKI and Noboru ENDOH
Kitami Institute of Technology, 165,Kouen-cho, Kitami-shi, 090-8507. Japan

1. 緒言
ヒートポンプを用いた暖房システムは、主として石油に
依存した寒冷地の在来型暖房方式と比べ石油使用量及び
CO₂発生量を著しく低減する事ができる。特に道東地域の
ように厳しい冬の気温が著しく低下する場合には、地中熱を
熱源とする地中熱ヒートポンプが有効であることを、2005
年から一戸建てモデル住宅に設置した地中熱ヒートポン
プ(以下 GHP)冷暖房システムの実用化研究によって実証
してきた。1 本研究では北見のフィールドデータに基づき、
国内各地の気温データや地中温度データから所要推算熱
深度を予測する手法を開発した。

2. GHP 冷暖房システムを適用したモデル住宅の概要
モデル住宅の概要図を Fig.1 に示す。モデル住宅は総面
積約115.7m²、熱損失係数 0.16[W/(m²K)]のガス給湯
式暖房住宅である。日射条件による影響を考慮し、
ヒートポンプ熱源利用システムを選択した。本研究では
二階建ての戸建住宅で総面積面積 204.6m²、熱損失係数
0.14[W/(m²K)]の二階建てモデル住宅を用いた。2007年から2009
年に1219か月・月の熱損失を計測した結果、GHP は地
中熱利用のため、石油給湯システムと比較して、石油給湯
システムの熱源としての効率が著しく向上している。2

3. 観測結果
地中温度は倉田篤(100m)、太陽熱等から4m及び
11m離れた地点(いずれも深度50m)において、深さ方向に
10m間隔でT温度計を配置し、データロガーに連続計測
した。地球表面の地中温度分布をFig.2 に示す。地中温度
は冬季に約10℃、冬期は約7℃となっている。

採熱(地中)側及び被上(床暖房)側の不凝液ライン中にカ
ロリーメーターを設置して採熱量Q₁及び及び被上熱量Q₂を計測
した。また GHP の圧縮機及び循環ポンプの投入電力を
それぞれ電力計で連続計測した。暖房期間中に温熱熱量
Q₁、吸収熱(吸収量)Q₂、冷媒熱量W の積算値をFig.3
に示す。2007-08年、08-09年は91mの採熱管を使用し
ているので比較のため深度100m相当に補正した。各観
測期間において、エネルギー保存則、式(1)がほぼ成立
しており、計測の妥当性を示している。

\[Q₁ = Q₂ + W \]

GHP の COP = Q₂ / W を Fig.3 中に示す。以下、本論文
中の「COP」はすべて GHP の COP を表す。

Fig.2 より 11-12年当の暖房期間は前の暖房期間と比べ
地中温度の低下が少ない。Fig.3 より 11-12年当
の暖房期間は他の年の暖房期間と比べ 20%以上暖房需
要が少ない。これは 11-12年当暖房期間中に入居者がい
たため、入居者入居者が使用した家電からの内部発熱
の影響ではないかと考えられる。

Fig.3 Energy balances and COP

4. 所要推算熱深度の推計
各施設工事 glare GHP 冷暖房システムを導入する際には、
適切な推算熱深度の決定が必要である。地域差は気温
差による暖房需要の差と、地中温度の違いによる推算
熱深度の差の二つが影響を及ぼすと予想される。

4.1 暖房需要 H₀
家屋の主な設計条件を示す場合は住宅利用熱損失係数(Q か
W/[m²K])と総面積面積 A [m²]に依頼して、明らかに暖房
需要はこれらに比例する(\(H₀ \propto Q \times A \))と推定される。2
設定回差 RT とを一定とすると(本研究では RT = 22℃)
RT と外気温度 T₀ の差 ΔT = RT - T₀ [K] は地域によって大
きく異なる。まず過去10年の平均気温 T₀ を一日ごとに
平均し、暖房期間(北見市の場合 10-5 月の8ヶ月)の
月ごとに24時間の平均気温プロファイルを求めた。
暖房期間の暖房需要 \(H_{0} \) [season]は、

\[
H_{0} = Q \cdot A \sum_{j=1}^{24} \sum_{t=1}^{360} \Delta T \times 3600
\]

ただし、\(\Delta T_{j} \) は一時間値 (1day = 24hour) である。式(2)から求めた北見の平年暖房需要 \(H_{0} = 47.4 \) [GJ/season] \((Q=1.094\ [W/m^2^]), \ A=97.78\ [m^2^]) であった。

北見で実測した暖房需要を基準値（添字0）とし北見に対する任意の地域の暖房需要の比を \(\gamma \) とするとき、

\[
y = H_{n} / H_{0} = Q \cdot A \sum_{j=1}^{24} \sum_{t=1}^{360} \Delta T' \cdot Q / A \cdot \sum_{j=1}^{24} \sum_{t=1}^{360} \Delta T_{j}
\]

と表せることができる。所要採熱管深さ \(L \) [m] は暖房需要 \(H_{n} (= \gamma \cdot H_{0}) \) に比例するものとして決定する。

4.1.1 暖房需要予測の簡素化

GHP 設計ツールを普及させるためには暖房需要の計算をより簡素化する必要がある。そこで AmeDAS に掲載されている過去30年間の外気温の月平均値 \(T \) を用いて暖房需要 \(H_{0} \) [season] の簡略計算を行った。暖房期間は10月から5月の8ヶ月とした（j=1-8）。

\[
H_{n} = Q \cdot A \sum_{j=1}^{24} \Delta T' \times 24 \times 3600
\]

過去10年間の時間平均外気温を用いて求めた暖房需要 \(H_{0} \) と過去30年間の月平均外気温を用いて求めた暖房需要 \(H_{0} \) の比較を図2に示す。平均誤差は±1.6%（最大誤差=4.3%：大分）であった。この結果から簡略化した計算方法は全国各地で有用であることが示された。

![Fig.4 Comparison of heating demand](image)

4.1.2 入居者による内部発熱

住宅に居住者がある場合、在宅者や使用した家電類から家庭内に熱（内部発熱）が発生する。11-12年度暖房期間にはモデル住宅に入居者があったため、暖房需要の大幅な減少と入居者による場合の内部発熱の関連性に関して評価を行った。

11-12年度暖房期間(2011/9/20-2012/5/17の241日間)にはモデル住宅に4名の入居者がいた。内訳は日中はモデル住宅には不在である。入熱計算を簡略化するため、昼間不在の3名は1日の1/3(8時間)を在宅するものとし、常時2名がモデル住宅に在宅しているものとして取り扱った。家電からの入熱に関しては、各家電の定格消費電力量を基に使用電力量、使用時間、入熱割合を推計し計算した。家電、入熱 \(H_{n} \) \(H_{2} \) はそれぞれ式(5)、式(6)より算出する。

\[
H_{1} = \sum_{t=1}^{360} (W_{1}T_{1}xR_{k}/D)
\]

\[
H_{2} = W_{2}xR_{k}xT_{1}/D
\]

\(W_{1} \): 電力使用量 [W] \(W_{2} \): 入熱需要量 (1=100[W]) \(T_{1} \): 日当りの使用時間 [h] \(T_{2} \): 日当りの在宅時間 [h] \(R_{k} \): 入熱割合 \(D \): 暖房期間日数 (241日) \(n \): 在宅者人数

式(2)より算出した11-12年度の暖房需要 (計算値) は42.1 [GJ/season] であった。この計算値と実測値の差は8.0 [GJ] である。一方上記の手法で求めた内部入熱は7.85 [GJ] であった。以上から、11-12年度の大幅な暖房需要の減少は居住世帯による内部発熱の影響として考えることができる。

Table 1 Thermal inputs from residents

<table>
<thead>
<tr>
<th>Electric appliances</th>
<th>Rated power ([\text{W}])</th>
<th>Power consumption ([\text{W/day}])</th>
<th>Operating time ([\text{h/day}])</th>
<th>Rate of heat input</th>
<th>Heat input at heating season ([\text{GJ}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>refrigerator</td>
<td>2000</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2000</td>
</tr>
<tr>
<td>microwave oven</td>
<td>1300</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>1300</td>
</tr>
<tr>
<td>rice cooker</td>
<td>700</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>700</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>total</td>
</tr>
</tbody>
</table>

Fig.5 Energy consumption schedule

4.2 所要採熱管深さ \(L \)

平年気温及び地中温度から算出した各地の所要採熱管深さをFig.6に示す。気温や地中温度が高いほど所要採熱管深さが短縮される。また前述したように居住者数の家庭構成により暖房需要が大幅に低減する可能性があることから、採熱管深さを設計する際に入居者の内部入熱を考慮することも有効である。

![Fig.6 Required depth of U-tube in various cities](image)

5. 結論

日本各地の暖房需要を容易に推計する簡易手法を確立し、これにより作成された平年気温及び地中温度から各地の所要採熱管深さを算出する手法をより簡略化した。

また居住者数の生活に伴う内部入熱の影響を考慮すれば採熱管深さをより短縮することが可能である。

文献

(2) 川瀬大樹ほか、「地中熱ヒートポンプ集中供熱システムにおける地中温度の解析」日本機械学会 北海道支部 第42回学術研究発表講演会, 2013.