1. 緒 論

ヒューマノイドロボットの環境適応性向上させるため、受動歩行の研究が盛んに行われている。これまでの研究では、三足歩行の受動歩行ロボットにおいて活動の運動周期と立脚の切り替え周期の一致が安定する三次元歩行の必要条件があることを見出した。そこで受動歩行ロボットに機械的振動子を搭載し、両周期を一致させる制御することで、下り坂、平地、歩行での歩行に成功した。しかししながら、オンラインで決定される機械的振動子の振幅については、下り坂、平地、上り坂という歩行条件の傾斜角の違いによって目標軌道生成アルゴリズムを作り替える必要があった。

本稿では、歩行での倾斜角や反復係数などの歩行規則状に、環境変化する歩行中のエネルギー収支に基づいて機械的振動子の振幅をオンラインで決定することで、より環境適応性の高い制御手法を提案し、Open Dynamics Engine (ODE)による数値シミュレーションと歩行実験によってその有効性を示す。

2. 制御手法

2.1 エネルギー収支に基づく制御手法

図 1 に ODE による数値シミュレーションに用いるロボットのモデルを示す。安定した歩行中のエネルギー収支の観点から、モータによる歩行に必要な 1 歩あたりの投入エネルギ \( E_I \) は、1 歩あたりの位置エネルギーの変化 \( \Delta E_P \) と散逸エネルギー \( E_D \) の和によって表される。この時、\( \Delta E_P \) は、傾斜のある坂の歩行による位置エネルギーの1歩あたりの変化 \( \Delta E_{P \_\text{step}} \) と散逸エネルギーの運動による最大ロール角の1歩あたりの位置エネルギーの変化 \( \Delta E_{P \_\text{roll}} \) の和で表され、安定に歩行している時、\( \Delta E_{P \_\text{roll}} \) 0 としている。\( E_N \) となるのは、

\[ E_N = \Delta E_{P \_\text{step}} + E_D \]  

(1)

を表す。この時、機械的振動子を駆動するモータはロボットに与える 1 歩あたりの仕事 \( W_E \) と \( E_N \) が釣り合うことから、エネルギー収支が平衡状態となり、安定な歩容が得られると考えられる。そこで、歩行中のロボットの状態を計測して股関節軸の中心点の高さの変化から \( \Delta E_{P \_\text{step}} \) 立脚の切り替え直前と直後の運動エネルギーから 1 歩あたりの散逸エネルギー \( E_D \) を求める。そして \( W_E \) に関しては、機械的振動子の回転角度 \( \theta_0 \) [rad]、ベクトルのトルクを \( T \) [Nm] すると、\( \theta_0 \) が 0 rad で最大振幅となる \( \beta \) [rad] まで、さらに \( \beta \) [rad] かぎり \( 0 \) rad になるまでの経路について \( \Delta W_E = T (\theta_0, \beta_0) \) の積分から算出することで、機械的振動子の振幅をオンラインで決定することが可能となる。

2.2 エネルギーの算出

実機においてはバランスモータが発生する仕事 \( W_E \) および散逸エネルギー \( E_D \) が求められる。2.1 節の制御手法を基に、実機においても実現可能な制御手法を提案する。歩行中のロボットの前傾面内から見た 1 歩目の前最大傾斜角から、1 歩後の後最大傾斜角を移行する間のエネルギー収支の関係は、前 1 歩の \( W'_E \), \( \Delta E_{P \_\text{step}} \), \( \Delta E_{P \_\text{roll}} \) および運動エネルギーの変化 \( \Delta E_K \) を用いて

\[ W'_E = \Delta E_{P \_\text{step}} + \Delta E_{P \_\text{roll}} + \Delta E_K + E_D \]  

(2)

と表せる。よって、(1), (2)より \( E_N \) は,

\[ E_N = W'_E - \Delta E_{P \_\text{roll}} - \Delta E_K \]  

(3)

により求められる。この時、\( W'_E \) は直接に求められないため、安定歩行中の機械的振動子の振幅 \( \beta \) [deg]、ロボットの傾斜角の最大 \( \theta_{\text{max}} \) [deg] と \( \theta_{\text{max}} \) の関係を表す 3 次元曲面 \( W_E(\beta, \theta_{\text{max}}) \) をシミュレーション結果を基に事前に作成し、\( \beta \) と \( \theta_{\text{max}} \) を計測することで \( W'_E \) を推定する。また、\( \Delta E_{P \_\text{roll}} \) は、ロボットの重心位置の変化の関数 \( \Delta E_K \) のように \( \theta_{\text{max}} \) および \( \Delta E_K \) は、6 軸センサによる角度、ピッチ角、ロール角、および \( x \), \( y \), \( z \) 軸周りの角度、ロータリーエンコーダにより得られるポシュートと脚部の相対角度、機械的振動子の運動軌道の情報を基に計算する。

2.3 振幅の決定

1 歩前の機械的振動子の振幅 \( \beta' \) [rad] とモータによる仕事 \( W_E' \) [J] が既知であるとする。機械的振動子の振幅 \( \beta \) [rad] と \( W_E \) が比例すると仮定すると、次の 1 歩に必要な振幅 \( \beta \) [rad] は,

\[ \beta = \frac{E_N}{W'_E} \]  

(4)

で決定でき、エネルギー収支に基づく制御手法により、機械的振動子の振幅をオンラインで決定することで歩行規則状に適応したエネルギーの投入を行うことで、ロボットの安定な歩行を実現する。2.1 節の制御手法によりエネルギー収支の有効性を検証し、2.2 節の制御手法により実機に対応した制御手法の有効性を検証する。

---

Fig. 1 Simulation model of a quasi-passive walker
3. 数値シミュレーション

3.1 シミュレーションモデルと制御条件

ODEによる数値シミュレーションには図1で示したロボットのモデルを使用する。ロボットは上部に機械的振動子を搭載し、脚部は単振り子状で膝及び足首関節を持たず、足趾部は曲率半径0.8mの球面足になっている。なお、歩行が不安定な歩行開始5秒後までは提案手法を適用せず、従来の安定化制御手法を用い、後で安定した後、エネルギー収支に基づく制御手法を適用する。

3.2 歩行前の角度変化に対する提案手法の有効性

提案手法の有効性を検討するために、角度変化を有する歩行に対する数値シミュレーションを行う。図2、図3は2.1節と2.2節の制御手法に関してそれぞれ角度±1度の登り坂、平地、角度−1度の下り坂を連続的に歩行した場合のENとW_eの変化を示したものである。図2、図3ともにENとW_eの値がほぼ一致しており、必要なエネルギー投人が適応的に行われていることがわかる。

3.3 歩行中の反発係数変化に対する提案手法の有効性

提案手法の有効性を検討するために、ロボット足部－床面間の反発係数が変化する歩行に対する数値シミュレーションを行う。図4、図5は2.1節と2.2節の制御手法に関してそれぞれ反発係数0.42から0.21に変化した場合のENとW_eの変化を示したものである。図4、図5に示す通り2.2節と同様に反発係数の変化に応じて、適応的に必要なエネルギーの投人が行われていることがわかる。

4. 歩行実験

歩行実験に使用するロボットを図6に示す。基本的な構造は数値シミュレーションモデルと同様で、内蔵センサーとして6軸（3軸加速度3軸ジャイロ）センサー及びロータリーエンコーダーを取り付けてある。なお、歩行が安定する歩行開始8秒後以降から2.2節のエネルギー収支に基づく制御手法を適用する。

4.1 実験条件

歩行実験に使用するロボットの基本的な構造は数値シミュレーションモデルと同様で、内蔵センサーとして6軸（3軸加速度3軸ジャイロ）センサー及びロータリーエンコーダーを取り付けてある。なお、歩行が安定する歩行開始8秒後以降から2.2節のエネルギー収支に基づく制御手法を適用する。

4.2 実験による提案手法の有効性

本報では、エネルギー収支に基づく準受動歩行ロボットの安定化手法を提案し、数値シミュレーションと歩行実験により有効性を確認した。その結果、歩行平成が異なる場合においても、歩行に適応したエネルギー投人が行われており、提案手法の有効性を示した。

5. 結論

本報では、エネルギー収支に基づく準受動歩行ロボットの安定化手法を提案し、数値シミュレーションと歩行実験により有効性を確認した。その結果、歩行平成が異なる場合においても、歩行に適応したエネルギー投人が行われており、提案手法の有効性を示した。

参考文献
