超音波による水-植物油エマルジョンの攪拌における速度分布計測の可能性

Possibility of the Speed Distribution Measurement in Churning of the Water-Vegetable Oil Emulsion using a Ultrasonic Velocity Profiler

Hiromu Saitoh, Muroran Institute of Technology, 59-2, Mizumoto-cho, Muroran, Hokkaido

Hideki Kawai, Muroran Institute of Technology

Key Words: Emulsion, Taylor-Couette Vortex Flow, UVP

1. 緒論

水と油のように互いに混ざり合わない物質を機械的に攪拌すると、一方が他方にエマルジョン滴として分散した溶液になる。特に溶媒油の中に水を分散させたエマルジョン燃料は、今後、各バイオ燃料ディーゼルエンジンの燃料として使用され、燃料の使用量の削減や有害排出物の減少に寄与することが期待される。本研究では、攪拌方法として Taylor 溶流れを使用し、水を植物油中に均一に分散させることを試みた。

Fig. 1 に TVF により水・植物油エマルジョンを作り、その流れの様子を超音波速度計測(Ultrasound Velocity Profiler: UVP)により測定した。

Table 1 Device Condition

内円筒半径 R_{in}	50 mm
外円筒半径 R_{out}	75 mm
橡間隔 d	25 mm
高さ H	75 mm
橇間比 (R_{in}/R_{out})	0.667
方向比 Γ'	3

2.2 測定装置概要

Fig. 2 に UVP に使用したシステムの概要図を示す。装置は超音波を発射する TDX、TDX を制御しデータの送受信を行うパルサー・リシーバー（P/R）、信号をデジタル信号に変換するデジタイザ（Digitizer）およびデータの処理を行うパーソナルコンピュータ（PC）からなる。P/R は Imaginant 社の DPR300 タイプを使用した。TDX の基本周波数は分解能を考慮して 8 MHz を用いた。TDX の測定体積は直径 2.5 mm×高さ 0.752 mm のディスク状となる。測定範囲 32 mPa・s の食用たんね油(日清オイリオ社)569 g にイオン交換水 100 g を投入し、分散させ水滴を計測した。また、比較実験として同様の実験装置で固体混合法の速度分布計測実験を行った。作動流体には 68 wt%グリセリン水溶液を、超音波の反射体（トレーサー粒子）には超音波ビーム直徑に対して十分に小さい平均粒子径（80 μm のナノコンパウンダー: ダイセルヒルス墨 WS200p）を流体中に混入して計測を行った。

Fig. 1 Taylor vortex flow generator

Fig. 2 Experimental devices

日本機械学会北海道支部 第53回講演概要集 (14.9.27・室蘭) —39—
2.3 パラメータ
超音波計測における各パラメータを Table 2 に示す。

<table>
<thead>
<tr>
<th>Table 2 Experimental Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
</tr>
<tr>
<td>25 MS/s</td>
</tr>
<tr>
<td>Number of Channels</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Number of Date(MAX)</td>
</tr>
<tr>
<td>2100</td>
</tr>
<tr>
<td>Fundamental frequency</td>
</tr>
<tr>
<td>8 MHz</td>
</tr>
<tr>
<td>PRF</td>
</tr>
<tr>
<td>4 kHz</td>
</tr>
</tbody>
</table>

3. 実験結果および考察
Fig. 3 にエマージョンを Re=500 で実験したときの様子を、Fig. 4 に水-植物油エマージョンの流速分布と固液混合流の流速分布を示す。縦軸に平均流速を、横軸に上部固定端からの距離を示す。なお、植物油内の音速が不明であるため、エマージョン実験での正確な速度が不明であるので単位を明記していない。

![Fig. 3 Taylor vortex flow emulsion](image)

Fig. 3 Taylor vortex flow emulsion

Fig. 4 Average velocity profile (Re=500)

Fig. 5 Average Velocity profile (Re=750)

これらの結果より、Fig. 4, Fig. 5 とも上部セルにおいて、水-植物油エマージョンの超音波計測が可能であることが確認された。しかし、下部セルでの計測は本実験条件ではできなかった。その原因として、エマージョン内に水の量が多すぎたために超音波エコーの減衰が大きく速度を測れなかったと考えられる。

今後の実験では投入する水の量を少なくするなど、実験条件を変化させて測定をする必要がある。
また、Re=2000 で内円筒を回転させたところ、全体が均一に発振した液面になり、回転を止めると長時間の状態であった。これを利用するとエマージョン燃料の容易な生成に利用できる可能性があると考えられる。

4. 結論
・水-植物油エマージョンが流動している場合、超音波より速度分布を部分的に測定可能であることが確認された。
・TVF を利用することによりエマージョンを容易に作製できる可能性が示唆される。