プレート式熱交換器を用いた CO₂ハイドレートの解離膨張特性に関する基礎調査

Study of the dissociation and expansion characteristics of a CO₂ hydrate using plate heat exchangers

○学 栗川孝介（北見工大院） 正 小原 伸哉（北見工大） 学 菊地祥洋（北見工大院）
川合 嘉（北見工大） 高橋 正光（北見工大） 清水良平（電機開発） 奥田学（北海道電力）

Kyosuke ISHIKAWA, Kitami Institute of Technology, 165, Koen-cho, Kitami, Hokkaido
Shin’ya OBARA, Kitami Institute of Technology
Yoshinobu KIKUCHI, Kitami Institute of Technology
Ryo KAWAI, Kitami Institute of Technology
Masamitsu TAKABATAKE, Kitami Institute of Technology

Key Words: Gas Hydrate, power generation, natural energy, distributed power system, plate heat exchanger

1. はじめに

寒冷地の冬期では大量の熱需要があるために、省エネルギーと地球温暖化ガスの排出削減が深刻な問題である。そこで本研究では、寒冷地における外気温および地中熱に より駆動可能な、分散能源用のクリーンな発電システムを開 発する。提案システムは高圧ガスエンジン発電機により、 CO₂ハイドレートの生成・解離に伴う圧力差を利用して運転する。本稿では CO₂ハイドレートの解離膨張特性を調査する。

CO₂ハイドレートでは、CO₂と水の混合流体を高圧で一定温度まで冷却することで、ハイドレートの生成が見られ、これ を加熱すると解離ガスが発生する。しかしながら、ハイドレートの生成速度は遅い反応であるため、エネルギー密度が低くなり結果として設置面積が増加してしまう。上記の問題の解決策の一つとして、伝業性能の高いプレート式熱交換器を用いてハイドレートの生成速度を向上させることを試み る。そこで本稿ではプレート式熱交換器を用いて、外気温 などと想定した冷却とたろう光または地中熱などを利用した過 熱により、CO₂ハイドレートを生成および解離させる場合の 熱サイクルについて調査する。

2. 発電システム

2.1 発電方法

図1に CO₂ハイドレートを用いた発電システムを示す。図1は CO₂ハイドレートを生成するための gas hydrate generator と、CO₂を貯蔵または放出するための gas hydrate accumulator で構成される。図1(a)では CO₂ハイドレートの生成時に gas hydrate accumulator から gas hydrate generator に CO₂が送り込まれる様子を示している。一方、図1(b)では CO₂ハイドレートの解離と、高圧の解離ガスによる発電の様子を示している。以下に発電のシステムの動作手順を述べる。

1) 図1(a)に示したように、gas hydrate generator には冷熱を供給し、gas hydrate accumulator には温熱を供給する。これに よって gas hydrate generator 内の水と CO₂の混合流体を冷却し CO₂ハイドレートを生成する。さらに gas hydrate accumulator 内の CO₂ガスを膨張させ、gas hydrate generator へ送る。2)図1(b)に示したように、gas hydrate generator に温熱を供給することで1)で生成した CO₂ハイドレートを hydrate formation space 内で解離する。

3) 2)によって発生した高圧の CO₂ガスを actuator に供給すると電力が発生する。また actuator の出口の CO₂ガスは gas hydrate accumulator にて回収し貯蔵される。これらの手順を繰り返すことで連続した発電が可能となる。

日本機械学会北海道支部 第53回講演概要集（14.9.27・室蘭）
3.2 実験方法
図2に示した熱交換器のプレートには、上部右側の出入口フローから純水130cm³とCO₂を130cm³充填して時間を十分において溶解させる。圧力が安定したら、内部の圧力を3MPaにするとCO₂を再充填する。その後、冷却液により装置全体を冷却、または下部右側の出入口フローから熱媒体を流して試料を冷却し、ブースター風おきにガスイードレートを生成する。生成した後、ブレート内部に熱媒体を流し込むことで、CO₂ハイドレートを加熱もしくは溶解する。溶解および冷却、加熱は全て24時間のサイクルで行った。

3.3 実験条件
CO₂ハイドレートの生成および溶解の実験は、表1中の(a)及び(b)に示した条件を用いた。実験(a)は外気温による冷却を想定し、実験(b)は外気温により、温度調節された熱媒体を用いた冷却を想定して条件を決めた。また、連続したサイクルを作るためには、解離後の圧力が初期圧力と同じ3MPaに戻す必要がある。そのために今までの実験結果から、本稿では加熱する熱媒体の温度を30℃に設定した。

Table 1 Experimental condition

<table>
<thead>
<tr>
<th></th>
<th>Cooling temperature</th>
<th>Heating medium</th>
<th>Cooling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>-15℃</td>
<td>refrigerator</td>
<td>24h</td>
</tr>
<tr>
<td>(b)</td>
<td>-5℃</td>
<td>antifreeze</td>
<td>24h</td>
</tr>
</tbody>
</table>

3.4 伝熱の計算
式(1)および(2)式は強制対流熱伝達率および自然対流熱伝達率の計算式である。式(3)および(4)は、CO₂ハイドレートの解離過程のエネルギー式である。式(5)は図2(a)中のプレート熱交換器の熱通過率を表しており、式(6)中の各熱伝達率は、式(1)および式(2)のNu数から得ることができ、この値を式(6)に与えることで、熱媒体を含むCO₂溶解水への伝熱量を計算することが出来る。

\[
\begin{align*}
\text{Nu}_{\text{w},\text{b}} &= 0.037 \cdot \text{Pr}^{0.1} \cdot \text{Re}^{4/5} \cdot \text{Sc}^{2/3} \quad (1) \\
\text{Nu}_{\text{w},\text{f}} &= 0.021 \cdot \text{Gr}^{1/4} \cdot \text{Pr}_{\text{f}}^{0.6} \\
\text{Nu}_{\text{g},\beta} &= \text{Nu}_{\text{w},\text{b}} + \text{Nu}_{\text{w},\text{f}} + \text{Nu}_{\text{g},\alpha} \quad (2) \\
\text{Nu}_{\text{g},\alpha} &= \text{Nu}_{\text{w},\text{b}} + \text{Nu}_{\text{w},\text{f}} + \text{Nu}_{\text{g},\beta} \\
\text{Nu}_{\text{w},\text{f}} &= K_{\text{mc}} \cdot \text{ghf} \cdot S_{\text{ghf}} \cdot \Delta T_{\text{mc},\text{ghf}} \\
\text{Nu}_{\text{w},\text{b}} &= K_{\text{mc}} \cdot \text{ghf} \cdot S_{\text{ghf}} \cdot \Delta T_{\text{mc},\text{ghf}} \\
\text{Nu}_{\text{g},\beta} &= K_{\text{mc}} \cdot \text{ghf} \cdot S_{\text{ghf}} \cdot \Delta T_{\text{mc},\text{ghf}} \\
\text{Nu}_{\text{w},\text{a}} &= K_{\text{mc}} \cdot \text{ghf} \cdot S_{\text{ghf}} \cdot \Delta T_{\text{mc},\text{ghf}} \\
\end{align*}
\]

4. 実験結果および考察
図3および図4に実験条件(a)および(b)の結果を示す。条件(a)による生成過程は1時間程度としたが、ハイドレートの生成速度の結果は、従来の2重管熱交換器に比べて増加した。これは、熱交換器の伝熱性能の違いによるものと予想される。プレート式熱交換器の熱伝達率が2重管熱交換器よりも大きいために、上述した伝熱性能の差が生じる。次に、図3に示したように、加熱過程の後の冷却圧力は2.8MPaとなり、生成時に解離時の圧力差は0.6MPaであった。一方、実験条件(b)では生成時間を2時間程度にしたが、生成時と解離時の圧力差は約1MPaであった。実験条件(a)および(b)の生成速度を比べると条件(a)の結果では、生成速度は速いもののが得られた圧力差は小さい。この理由は、-15℃で冷却を行うと純水が凍結してしまう。固体状態でのCO₂ハイドレートの生成量は、液体状態でのハイドレート生成量と比べて少ないうためである。したがって、CO₂ハイドレートの生成過程では凍結に注意を要する。提案システムではCO₂ハイドレートの生成過程および解離過程での圧力差を利用して発電するため、生成時と解離時において高い圧力差が必要である。しかしながら加熱選択時の圧力は、冷却開始時の3MPaに戻っていない。これは実験の準備段階で、CO₂が水に十分に溶解していなかったからである。

5. 結言
本研究ではプレート式熱交換器を用いたCO₂ハイドレートの熱サイクル特性（解離膨張特性）と生成速度について調査を行い、以下の結果が得られた。

1)プレート式熱交換器は、従来の2重管熱交換器に比べて伝熱性能がよくて生成速度が増加した。しかし、生成過程において純水を凍結させると、CO₂ハイドレートの生成量は低下する。

2)CO₂の水に対する溶解度が不十分であると、CO₂ハイドレートの生成時と解離時の圧力差は小さい。

Fig. 3 Dissociation and expansion characteristics of CO₂ hydrate(cooled temperature -18℃)

Fig. 4 Dissociation and expansion characteristics of CO₂ hydrate (cooled temperature -5℃)

Nomenclature
Nu : Nusselt number
Pr : Prandtl number
Re : Reynolds number
Gr : Grashof number
q : Quantity of heat [kW]
S : Heat transfer area [m²]
K : Overall heat transfer coefficient [kW/(m²·°C)]
ΔT : Temperature difference [°C]
h : heat [kW]

Roman character
δ : Thickness of heat transfer plate of plate heat exchangers [m]
λ : Coefficient of thermal conductivity [W/(m²·°C)]

Subscript
hmc : Cold heat medium
ghf : CO₂-dissolved water in gas hydrate formation process
ghf : CO₂-dissolved water in gas hydrate dissociation process
li : Heat of reaction or formation of CO₂ hydrate
li : Latent heat of freeze or melting of CO₂ dissolved water
s : Sensible heat of CO₂ dissolved water

文献