キャビテーションウォータージェットにおける

ホーン形ノズル内部での周期挙動の観察

Observations of Cavitation Behavior on Cavitating Water-jet in Horn-Type Nozzle

○学 水雄 茂雄（金沢工大・院） 正 佐藤 康弘（金沢工大） 正 佐藤 康一
Shigeaki Hagiwara, Yasuhiro Saito, Keiichi Sato
Kanazawa Institute of Technology, 7-1 Ogigaoka Nojino Machi, Ishikawa

Key Words: Water-jet, Horn nozzle, Cavitation bubbles, High-Speed observation

1. 緒言

キャビテーションを伴う高速水中水噴流は工作物の洗浄、バリ取りとしてショットスピニングなどに用いられ、その応用範囲は広い。このような加工や洗浄の効率向上には発生するキャビテーションが密接に関係しており(1)、この制御が重要な因子の一つである。これまでの研究において、キャビテーション・クラウドの発生および断続的非定常キャビテーション挙動の存在(2,3)が示されており、このクラウド状キャビテーションの崩壊によって高衝撃が発生していることや圧電型衝撃変換器を用いた研究(4)により空間的衝撃力分布などが示されている。しかし、このキャビテーション・クラウドの非定常挙動の発生メカニズムはまだ詳しく調べられていないようである。そこで本研究ではキャビテーション・クラウドの非定常挙動を明らかにするため、ホーンノズル内部を高速ビデオ観察した。ノズル内部のキャビテーション様相に関してはスロート部でのキャビテーションと噴流まわりのキャビテーションに関して調べている(5)、ここでは特にノズル内部での周期的なキャビテーションの動的な挙動に着目して詳細に観察した。

2. 実験装置および方法

図1に本実験で用いた供試ノズルを示す。これら3種類の形状はホーン形状が噴流様相に及ぼす影響を調べるために用いた。ホーン形状の特長はホーン部の長さ12mm(A003)、20mm(A004)、そして12mmの後に8mmの平行部を有するものの(A005)の3種類である。いずれのノズルにおいてもスロート部径は1.05mmで長さは4mmである。材質は透明ポリカーボネート樹脂とポリプロピレンによるものである。ノズル上流部の圧力は最高吐出圧力7MPaのポンプにより変化させた。実験はほぼ大気圧(0.1MPa)の水中で行い、試験水は本実験を行うキャビテーションの様相は高速度ビデオカメラ(コダック製EKTAPRO HS-4540)により観察した。

また本研究で用いる記号は次のとおりである。Taは室温[K]、Twは水温[K]、P1はノズル上流部圧力[MPa]、P2は大気圧[MPa]、Qは流量[m3/s]、Vはスロート部速度[m/s]、Fsは撮影フレーム速度[fps]、βは溶存酸素量[mg/l]、rはスロート部出口からの距離[mm]、dはスロート部直径[mm]を表す。

3. 結果および考察

3-1 ノズル形状による噴流様相の変化。本研究では3種類のホーン部形状のノズルを成形し様相観察を行った。その結果を図2に示す。ノズル上流部圧力はそれぞれ6.1、5.8、6.2MPaである。いずれのノズルのホーン部においても、ホーン部形状により周期は異なるものの、成長したキャビテーション・クラウドが下流側へ周期的に放出される様相が観察される。このときのA003、A004、そしてA005形ホーンノズルにおけるキャビテーションの放出周期は0.66ms、0.55ms、0.66msで、キャビテーション先端の移動速度はそれぞれ約45m/s、30m/s、23m/sであった。

また、ノズル上流部圧力を変化させキャビテーション様相の変化を観察した。ここではノズルA004における結果を図3に示す。上流部圧力の低下に伴いクラウドの放出周期が短く、さらに圧力が低下するとその周期性も不明瞭になる傾向にある。このとき、図3(a)では1.11ms、(b)では0.89ms、(c)では0.44msであった。

日本機械学会 [No.047-1] 北陸信越支部 第41期総会・講演会論文集 [2004.3.16、富山県小杉町]
このときのノズル内部の流れを可視化するため、ノズルホーン内部壁面にタフトを取り付け、その様相を図5に示す。この様相は図4中のFrame No.18付近に相当する。ノズル内部にタフトを取り付けその流れを観察したところ、図4Frame No.14-18に対応するような気泡崩壊挙動を示す場合、タフトはノズルスロート方向へたなびき、またFrame No.26付近のように大きくキャビテイが成長する場合には、やや速度が遅くなる傾向があった（アルミナ粉を用いた定性的な流れの可視化も同時に行なった）。ここにホーン部壁面近傍においてはほとんどの場合流れは逆流方向（スロート部方向）であった。

4. 結言

3種類のホーンノズルを用いてノズル内部の非定常キャビテーションジェット様相を観察した。
(1)ホーン形ノズル内部において、明瞭に周期性をもつキャビテーション・クラウドの非定常挙動が確認された。
(2)周期的なクラウドの放出挙動はノズル内部での流れに密接に関係している。
(3)ノズル形状においてキャビテーション・クラウドの放出周期はノズル上流部圧力がほぼ同じであればノズルホーン形状によりずほぼ一定であった。
(4)ノズルホーン上部で成長したキャビテーション・クラウドは下流方向へ放出されるとともに、上流（ノズルスロート部）方向へ崩壊伝播していく様相が認められた。
(5)ホーンノズル部の壁面近傍における流れ方向はほとんどの場合逆流方向であり、特に上流方向へのキャビティ崩壊伝播時に逆流速度が大きくなる傾向にある。

図4 A003 Horn nozzle bubble behavior

Fig. 3 Aspects of cavitation clouds in A004 nozzle

参考文献

(1) 祖山、ほか5名、機論、59-562、B(1993)、1919-1924.
(2) 内山、ほか4名、機論、62-593、B(1996)、2947-2952.
(3) 小林、ほか3名、日本ウォータージェット学会技術年次報告会、No.5、(2003).

Fig.4 A003 Horn nozzle bubble behavior

Fig.5 Tufts behavior inside horn nozzle