温水器・熱交換器用フェライト系ステンレス鋼の耐食性評価

Evaluation of Corrosion Resistance of Ferritic Stainless Steel for Hot-water Supplier and Heat Exchanger

〇 藤井 俊秀（信州大 院） 丸山 誠（信州大 学）
正 牛 立喜（信州大 工） 正 高久啓（信州大 工）

Toshihide FUJII, Shinshu University, Wakasato 4-17-1, Nagano City, Nagano Prefecture
Ryo MARUYAMA, Li-Bin NIU, Hiroshi TAKAKU, Shinshu University, Wakasato 4-17-1, Nagano City, Nagano Prefecture

Key Words: Ferritic Stainless Steel, Hot-water Supplier and Heat Exchanger, Corrosion Resistance, Corrosive Chemicals

1. 緒 言
近年、生活様式の高度化に伴い、家庭やオフィスでは給湯用の温水器が普及されている。温水器・熱交換器には上水（水道水）や地下水等が用いられているが、水脈である河川水や地下水等の汚染物質である有機物あるいは菌類系の汚染物質イオン等は温水器・熱交換器の腐食の要因となると考えられ、今後の課題の一つとなっている。しかし、腐食に及ぼす水中に見られる有機物ないしは菌類系の影響に関する系統的な研究や知見などは不十分な状況にある。

本研究では、現用温水器・熱交換器用フェライト系ステンレス鋼の腐食に及ぼす水中有機物の影響を試験・評価した。

2. 実験方法
2-1 供試材と試験片
供試材は、現用の温水器・熱交換器用材料である極低炭素フェライト系ステンレス鋼YUS190鋼(JIS SUS 444 鋼相当材)であり、供試材の化学組成を Table 1 に示す。腐食試験片は供試材の母材およびTIG溶接部から試験片を採取した。試験片のサイズはいずれも0.9mm×10mm×25mm/1であり、これをエリメタル研磨(#1200)し腐食試験を行った。

2-2 高温水中浸漬腐食試験
温水器の使用温度90℃において、水道水中の有機物として、ジクロロ酢酸(C2H5COOH)とホルムアルデヒド(HCHO)濃度を変化させ水道水に添加した以下の8種水中で浸漬腐食試験を行った。

①89ppm C2H5COOH, ②10ppm C2H5COOH+200ppm Cl2, ③10ppm C2H5COOH, ④100ppm C2H5COOH, ⑤0.8ppm HCHO, ⑥0.8ppm HCHO+200ppm Cl2, ⑦0.8ppm HCHO, ⑧80ppm HCHO

試験水のpHおよび電気伝導度を Table 2 に示す。

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Nb</th>
<th>Ti</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>YUS190</td>
<td>0.004</td>
<td>0.15</td>
<td>0.14</td>
<td>18.59</td>
<td>0.022</td>
<td>0.002</td>
<td>1.83</td>
<td>0.20</td>
<td>0.18</td>
<td>0.015</td>
</tr>
<tr>
<td>SUS444</td>
<td><0.025</td>
<td><1.00</td>
<td><1.00</td>
<td>17.0-20.0</td>
<td><0.040</td>
<td><0.030</td>
<td>1.75-2.50</td>
<td>8×(C+N)</td>
<td><0.80</td>
<td><0.025</td>
</tr>
</tbody>
</table>

2-3 高温電気化学的腐食試験
アノード分極測定は、JIS G 0579に準拠し試料極、Pt対極およびAg/AgCl参照電極の3電極方式により自動測定装置を用いて、電位掃引速度20mV/minで実施した。

実際の温水器の使用環境(10℃)において、ジクロロ酢酸(C2H5COOH)およびホルムアルデヒド(HCHO)に加え、その水道水環境基準値の10倍～1000倍の濃度を純水に添加した計10種類の水中で試験を行った。試験水の水質、pHおよび電気伝導度を Table 3 に示す。

3. 結果と考察
3-1 高温模擬水中における耐食性
全表面腐食性
温水器に用いられる耐食性材料としては、腐食が生じやすい熱交換器製品に用いられることが考えられる。耐食性は、材料中の炭素含有量の極低減化により溶接部の敏化化が抑制されたことに起因するものと考えられる。

ジクロロ酢酸を添加した試験水では全腐食水の使用時間500時間の浸漬試験までに著しい腐食は見られなかった。しかし、さらに長時間の1000時間浸漬試験では孔食の発生が認められたが、これはpHと電気伝導度の低下によると考えられる。

水質②と水質⑥では、500時間の浸漬試験において孔食の発生は確認された。これはジクロロ酢酸やホルムアルデヒドの添加の影響よりも添加した200ppm塩化物イオンが腐食に大きく影響を及ぼしたためと考えられ、また、直物質の酸化に起因する腐食の成長速が加速要因になったと推測される。

Fig. 1 と Fig. 2 に水質①の500時間と1000時間試験後の表面腐食状況を示す。いずれのサンプルでもCrの酸化物カーネルが見られる。また、アルゴンバタリングの結果、酸化層の内部にぞく腐食が認められる。これら等の結果から腐食は良好な耐食性を有するCr酸化物(Cr2O3)から構成されていることが同定・確認された。
隙間腐食性：
腐食表面のミクロ観察の結果、全水質において500時間の試験後において、母材部と溶接部材試験片のいずれで狭い隙間部において乳食の発生は顕著であった。これは、隙間部と外部における酸素濃度の差異に起因するものと考える。すなわち、外部は酸素量が多いため酸素を消費するカソード反応が、また狭い隙間部はアノード反応が発生する「酸素濃差電池作用(通気差電池作用)」である。また、腐食性化学種の濃縮によって腐食環境が著しく悪化した結果も腐食の加速要因となったことが推定される。CTは腐食を著しく加速する。

全面腐食性と同様、母材と溶接部材における腐食の差異は殆ど見られなかった。水質4においては水質および溶接部材のいずれの試験片においても茶褐色の皮膜の生成が観察された。SEM-EDXによる分析の結果から、この茶褐色の皮膜にはFeおよびCrの割合が高いことが明らかになった。すなわち、茶褐色の皮膜はFe酸化物(Fe₂O₃)とCr酸化物(Cr₂O₃)との混合物から構成されていると推定される。

3-2 高温水中における電気化学的腐食挙動
Fig.3に水道水と水質①〜⑤における溶接部材試験片のアノード分極曲線を示す。母材および溶接部材のいずれも電流値の大きな差異は見られなかった。また、水質①〜⑤においてはジクロロ酢酸の添加量が増えるとともにpHの低下および電気伝導度の増大が確認された。また、ジクロロ酢酸を環境基準濃度の100倍以上を添加した水においては、不働態域における保持電流値の上昇が認められ、さらに、過不働態域における電流値が急激に増大する電位が見られることが明らかになった。一方、水質⑥〜水質⑤におけるホールムアデヒドに関しては、濃度を変えてもpHおよび電気伝導度で殆ど影響を及ぼさないこと、ならびに全水質において分極曲線がほぼ一致することから、本試験条件内ではホールムアデヒドは腐食に殆ど影響を与えないと明らかになった。

4. 結言
極低炭素化により本材料の銅鉄化が抑制されているため、溶接部の腐食は母材とほぼ同等であった。ジクロロ酢酸の水中濃度の増大はpH低下と電気伝導度上昇を招くため腐食を促進する。ホールムアデヒドの水中添加は腐食環境を殆ど悪化させないため腐食に殆ど影響を与えない。これらの有機物に加えて塩化物イオンの添加は本材料の腐食を著しく加速する。

Table 3. Water quality for electrochemical corrosion

<table>
<thead>
<tr>
<th>Water Quality</th>
<th>pH</th>
<th>Electrical conductivity (S/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap Water</td>
<td>7.61</td>
<td>0.221</td>
</tr>
<tr>
<td>1.0ppm Cl₂CHCOOH</td>
<td>7.56</td>
<td>0.223</td>
</tr>
<tr>
<td>2.0ppm Cl₂CHCOOH</td>
<td>7.29</td>
<td>0.822</td>
</tr>
<tr>
<td>10ppm Cl₂CHCOOH</td>
<td>7.12</td>
<td>0.251</td>
</tr>
<tr>
<td>100ppm Cl₂CHCOOH</td>
<td>4.53</td>
<td>0.290</td>
</tr>
<tr>
<td>0.8ppm HCHO</td>
<td>7.62</td>
<td>0.223</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.60</td>
<td>0.752</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.62</td>
<td>0.217</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.62</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Table 2. Water quality for 90°C water corrosion test

<table>
<thead>
<tr>
<th>Water Quality</th>
<th>pH</th>
<th>Electrical conductivity (S/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap Water</td>
<td>7.61</td>
<td>0.221</td>
</tr>
<tr>
<td>1.0ppm Cl₂CHCOOH</td>
<td>7.56</td>
<td>0.223</td>
</tr>
<tr>
<td>2.0ppm Cl₂CHCOOH</td>
<td>7.29</td>
<td>0.822</td>
</tr>
<tr>
<td>10ppm Cl₂CHCOOH</td>
<td>7.12</td>
<td>0.251</td>
</tr>
<tr>
<td>100ppm Cl₂CHCOOH</td>
<td>4.53</td>
<td>0.290</td>
</tr>
<tr>
<td>0.8ppm HCHO</td>
<td>7.62</td>
<td>0.223</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.60</td>
<td>0.752</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.62</td>
<td>0.217</td>
</tr>
<tr>
<td>8.0ppm HCHO</td>
<td>7.62</td>
<td>0.225</td>
</tr>
</tbody>
</table>