大規模 FEM を用いたコンクリート構造物中の超音波伝搬

Ultrasonic propagation behaviors in concrete structure using FEM method

○学 永井祐気（富山大） 正 三原毅（富山大）
正 田代発造（富山大）

Yuuki Nagai, Tsuyoshi Mihara, Hatsuzo Tashiro
University of Toyama, Gofuku 3190, Toyama

Key Words: Ultrasonic, Finite Element Method, Concrete, Combined materials

1. はじめに

固体内の超音波の伝搬は複雑で、その把握を誤ると場合によっては測定結果に大きな誤差を生じる場合がある。従って伝搬挙動を正確に把握するためには有限要素法や有限差分法が適用されてきた。しかし、最も精度が高いとされる FEM は、超音波の伝搬を動的に解析する場合膨大な要素数と解析時間を要し、差分法や境界要素法では、常に解析結果の精度を留意しなくてはならない。工学的に汎用で高精度に利用できるシュミュレーション法がなかった。ここでは、最近開発された、超音波伝搬解析に特化した、大規模 FEM を用い、コンクリート構造物中の超音波伝搬と受信波形の関係を検証した。

2. 不均一材料の測定音速の意味

コンクリート等の不均一材料の強度評価を最終目的として、超音波音速の利用が考えられている。実際のコンクリート構造物では超音波が大きな減衰を生じるため、音速測定は主に音速測定（初期に受信された超音速を用いて行われる。最も簡単な複合材料で、Fig.1 の水中におけるガラス円筒 2 次元モデルを考え、ガラス中を伝搬する超音波が回折せず直進し、伝搬距離 180mm で半径 15mm のガラス玉を透過した受信エコーの波形図を Fig.2 に示す。ここでは、超音波を 77 本の直線で表し、各直線の伝搬経路毎に遅延時間を計算した。超音波は 1490m/s、ガラスの音速は 5698m/s とした。

Fig.1 Analysis model

超音波は伝搬経路伝搬経路に対応して分散を示し、初動波は音速の速いガラス中を最も長く伝搬した波で形成される。実際には UT は結晶状を生じ、このモデルに物理的意味が無いが減衰を考えないこのモデルでも、受信波形は大きな分散を示し、結果的に減衰が大きくみえることに注意を要する。実際のコンクリートの測定では、透過法で初動波を用いるため、ここで測定される“音速”は、音速の速い骨材を最も長く伝搬する経路の“音速”を測定することになる。

以下により詳細な解析を行うため 2 次元の FEM 解析を用いて、水中においてガラス玉モデルにおける、超音波の伝搬挙動を解析した。

3. 不均一材料の FEM による超音波伝搬解析

有限要素法（FEM）は、最も精度の高い応力解析手法として確立され、流体、熱、弾性波等の動的解析にも用いられてきている。応力解析では、水理媒が入る構造のように利用されているが、弾性波動として超音波の伝搬解析を解析し、超音波観察の定量評価に利用することを考えた場合、市販の有限要素コードでは、短い要素数と計算時間を要し、工学的には簡易的な利用が困難だった。本研究では、最近市販された弾性波伝搬に特化した有限要素解析コード（ComWave）を用いて、有限要素解析を行った。解析、Fig.1 に示した水中ガラスモデルを用い、コンクリートの主成分であるモルタル（音速 3545m/s）内に同体積の円あるいは揚声器の骨材（音速 4721m/s）を、円形についてそれぞれ 90° 簡けて配置した。入力接触子は、著者がコンクリートの音響実験用に製作の 76mm、0.5MHz の半波長用接触子を想定した。Fig.3(a)は円形ガラス、Fig.4(a)は円形の長軸横引き、Fig.4(b)は円形長軸長向き配置の解析結果を示す。図は解析結果の音圧分布をそれぞれに示している。モルタルの寸法は 90×100mm の 2 次元モデルで、円形の長軸 20mm、短軸 10mm である。音子は 0.3mm で約 0.1%要素数を分割した。

Fig.2 Reflection wave

(a) Pressure distribution (b) Transmission wave

FEM での解析から、骨材中を伝搬する超音波は、骨材から
モルタルに超音波が伝播する際、骨材の外部形状を考慮し、骨材形状を伝播する。
これらは骨材の違い音響を反映し、骨材形状を伝播する。
円形モデルでは初動波は円形に、楕円モデルでは楕円形状に
伝播している。これらの初動波の影響を受ける波形がこれ。
これらの影響を反映して強度や波形が変わる。いずれのモデルで
も、初動波速度は大きく、後方から伝播するモルタル中の直
進平面波に比べ、25%程度の振幅しか得られない。

この解析はあくまで骨材が1つの簡単モデルであり、実
際の構造物はより複雑になる。以上のような考察を踏まえて、以下
に実際の3次元コンクリートモデルの伝播解析を行った。

4. FEMによるコンクリートモデルの解析結果
実際にコンクリートを伝播する超音波を解析するために大
規模な3次元モデルを作製した。作成したモデルは、モルタル
200×110×110mm 内に全体の体積比45%の割合で骨材の
骨材を配置した。骨材の形状は長さ25～30mm、短さ20～25mmである。1要素は0.4mmで約3800万要素に分割し、
3次元解析をおこなった。入力波は前章の解析同様、短9mm
の探触子と0.5MHzの波長を用いた。なお、このモデルはコ
ンクリートの側面が吸収体となっており、無限に広がりをも
ったものとしてみなすことができる。作成したモデルの概要を
Fig.5(a)に示す。このモデルを用いて、解析を行った。解析
結果の例を、モデル内を伝播する超音波を音圧分布表示で、
Fig.5(b)に示す。

入力する超音波は、入力の幅の狭い平面波だが、複雑な組
織と、それらの音速の差異により、複雑な伝播経路や曲折、
散乱等により、時間的に大きな分散が見られ、伝播挙動は前

著者らは比較のため、ここで用いたFEMモデルに準じた、
モルタルに対し骨材を体積比45%とした、コンクリート試験
体を作成し、ステップ間数探触子（2）を用いて、手持ちのφ
20mm、半径0.2MHzの探触子を用いて、作成したコンクリート
試験体の透過実験を行った。実験の詳細はここでは略すが、
コンクリートの物性を特化した構成の測定系である。Fig.6に、
透過測定波形の例を示す。用いた周波数が、解析とは異なる
ため受信波の速度は必ずしも対応しないが、初期波の後方でた
くさんの受信エコーが観察され、初期波以外の受信エコーを
用いた圧力計測は困難であると考えられる。実験では、初期
波が後方の波に比べ強く測定されたが、用いた探触子の直径
が解析に比べ約1/4と小さく、骨材を伝播する初期波が測定
できていない可能性がある。あるいは0.2MHzと低い周
波数を用いたための差異とも考えられるが、今後より詳細な
検討が必要である。

5. 参考文献
(1) 超音波試験法による新設の構造体コンクリート強度測
定要綱（案）、独）土木研究所、社）日本非破壊検査協会 (2006)
(2) Y. Udagawa, K. Date and T. Mihara, Rev. of Prog. In QNDE
14, 2277-2284 (1994)