PSMCの設計手法を取り入れたバイラテラル制御の評価

Estimation of Bilateral Control Using Design Method by PSMC

○学

すし

バへ操

発 鳳 プ

漕 タ

感

す 巽怨

い

f

、

狱 わ る 急 激 な 動 霞 を 「鱗 浪 す る \〜 異 常 化 ろ な

一

订

い

テ

に

的

工

wei: 2009

397

Fig.1 Design example on the state space

Fig.2 Symmetry type bilateral control using PSMC
4. シミュレーション
4.1 シミュレーション方法
まず、PSMCの特性を確認するために、図2のスレーブ側のものを使用したシミュレーションを行う。p_sを時刻1[s]でステップ状の目標位置0.5[rad]を、さらに5[s]後に再びステップ状の目標位置0[rad]を入力し、制御対象D_eから出力される角度[rad]を測定する（シミュレーション1）。なお、モータの伝達関数は

\[\frac{\theta_s}{V_{in}} = \frac{1}{K_T} \]

\[T_e = \frac{R(J_e + J_p)}{K_p K_i} \]

\(\theta_s \)：角度
V_{in}：電圧
T_e：機械的時定数
T_r：トルク時定数
K_p：トルク制御
K_i：誘起電流制御
J_e：電気子の慣性モーメント
J_p：負荷の慣性モーメント
R：電気阻抗

であり、パラメータは表1の値を使用する。

Table 1 DC motor specifications

<table>
<thead>
<tr>
<th>item</th>
<th>unit</th>
<th>value</th>
<th>J_e</th>
<th>unit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_e</td>
<td>s</td>
<td>0.0064</td>
<td>J_e</td>
<td>Nm/A</td>
<td>0.193</td>
</tr>
<tr>
<td>K_p</td>
<td>Nm/A</td>
<td>0.000382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_i</td>
<td>V/rpm</td>
<td>0.0203</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

次に、図2のシミュレーションを行う。マスタ側、スレーブ側の制御対象D_m, D_eはそれぞれシミュレーション1と同様のものとし、F_mを大きさ1[N], 周波数0.5[Hz]の正弦波を入力する。そして時刻1.5[s]で、3.5[s]でスレーブ側を拘束したのちに拘束を解き、目標軌道へのp_sの復帰動作、制御器から出力されるトルクを確認する（シミュレーション2）。比較対象としては、スレーブ側にPID制御器とトルクのリミッタ(-1.2~1.2[N], PSMC内部で設定した値と同じ)を付加した対称バイラテラル制御を使用する。なお、PSMCについては、バイラテラル制御への付加にあたりチューニングを行ったため、パラメータはシミュレーション1とは異なる。

4.2 シミュレーション結果
図3はシミュレーション1の結果を示したものである。図3(a)より、制御対象の角度がオーバーシュートを起こさずに目標値に到達していることがわかる。さらに図3(b)より、最初の目標値の変化では1の目標値到達前に一定速度を維持し、その後スライディングモードを維持して目標値に到達していることが確認できる。さらに、次の目標値の変化でも同様に目標値に到達している。その切換面の傾きはPSMC内部で設定されたものと一致している。それらは要質のProxyがPID制御器を介して制御対象の状態を拘束していることと起因すると考えられる。また、一定速度で切換面に到達していることに関連して、PSMC内部で始まれば近い速度設定を行うことが「アクチュエータ発生力の上限」と「速度設定」に関するパラメータにより得られた効果と考えられる。

図4はシミュレーション2の結果を示したものである。図4(a), (b)より、比較対象との提案手法の両方において、スレーブ側の拘束時にはマスタ側に与えられている力による変位が小さくなり、拘束を解くと急激な変化を起こさないよう対策を講じた。拘束の解除で目標軌道への復帰動作が確認できるが、変位において双方に目立った違いは見られなかった。この制御対象にリミッタ等の負荷を追加していないため、慣性や粘性による影響が小さいことが考えられる。また、図4(c)はスレーブ側制御器が出力するトルクの推移を比較したものである。比較対象において、時間tが増加するとトルクによって発生した電流値が電圧の増加を起こしている。これに対して図4(b)の電圧値は一定であり、電圧が一定であることが確認できる。

5. 結言
制御対象のモデル化やパラメータを使用しないPSMCの基本的な設計手法により、対称バイラテラル制御の追従動作にトルク制御においては目標値を維持する。安全性向上に関することを示すことができた。大きな偏差から近い追従動作がより低減できる。ただし、バイラテラル制御に適用するPSMCのリミングモードにおける制御変更、パラメータ調整の自動化においては今後の課題である。

参考文献
1) 藤本：滑り状態による制御精度に関する研究，第32回日本ロボット学会学術講演会講演論文集，3A16, 2005
2) 藤本：プレハブシステムスライディングモード制御の再现と一般化，第25回日本ロボット学会学術講演会講演論文集，JIM5, 2007