噴流による鈍頭物体周りの流れの制御

Control of Flow around a Bluff Body using a Coanda Jet

○学 松原 哲哉（工学院大） 正 佐藤光太郎（工学院大）

Tomoya MATSUBARA, Kogakuin University, Nishi-Shinjuku 1-2-4, Shinjuku-ku, Tokyo
Kazuhiko YOKOTA, Nagoya Institute of Technology
Kotaro SATO, Kogakuin University

Key Words : Circulation Control Wing, Coanda Effect, Fluid Force, Ground effect

1. 結論

噴流を利用して物体に働く流体力を制御する試みが盛んになされている。古くから鈍頭流体としては翼の境界層制御・失速制御に用いられ、高揚力装置としては後継後に設けられた曲面上で接線方向に吹き出しを与えた、コアニング効果により主流周りの循環増加を図る循環制御翼（Circulation Control Wing : CCW）が考案されている。しかし、翼の失速制御やCCWについては既に多くの研究報告がなされているものの、鈍頭物体に働く流体力への及ぼす噴流の影響について調べたものは限られており、ノース等に応用されている接線方向吹き出し円柱に噴流を利用した自動車の抵抗軽減等について報告がなされている程度である。

本研究は噴流を利用して非連続流体の基礎的解釈として、吹出し流体を有する鈍頭形状流体の流動特性と物体に働く流体力との関係について解明を試みる。主として実験装置の圧力計測から求めた鈍頭形状流体に及ぼす噴流の運動量係数や物体形状（曲率）の影響について調べた。さらに鈍頭形状の近傍に固体壁を配し、鈍頭形状を有する鈍頭物体の空力特性に及ぼす固体壁面の影響について議論する。

2. 主な記号

\( U_f \) : 噴流速度 [m/s]
\( U_0 \) : 主流向速度 [m/s]
\( b \) : スロット幅 [m]
\( \rho \) : 密度 [kg/m^3]
\( H \) : 壁面距離 [m]
\( R_o \) : 前方形状曲率半径 [m]
\( R_i \) : 後方形状曲率半径 [m]
\( w \) : スパン [m]
\( C \) : 試験片の長さ

3. 実験装置及び方法

本実験で用いた実験装置概略を図1に示す。作動流体は空気であり、実験には400mm×200mmの吹き出し口面をもつ開放型低速流れを使用し、実験片はノズル出口から170mm下流に設置され、両端はアクリル板により保持されてい

4. 結果及び考察

図3に \( R_i/R_o \) をパラメータとして揚力係数 \( C_l \) に及ぼす運動量係数 \( C_r \) の影響を示す。いずれの \( R_i/R_o \) においても \( C_r=0 \) の場合には \( C_l=1.0 \) 程度で3者に大きな差は確認できない。しかし、\( C_r \) が増加していくと、\( R_i/R_o=0.93 \) の場合には \( C_r=0.30 \) 付近で、\( R_i/R_o=0.94 \) の場合には \( C_r=0.45 \) 付近で、\( R_i/R_o=0.95 \) の場合には \( C_r=1.40 \) 付近で \( C_l \) の値が不連続的に変化して大きな値を示す。これは噴流により鈍頭形状の強制再付着が抑えられ揚力が急激に増加したもので、この時の \( C_r \) 値が再付着の臨界運動量係数 \( C_r \) となる。すなわち、本実験条件においては、他の大きな遠心力を作用する

\( R_i/R_o=0.92 \) において \( C_r \) の大きな値をとる。いずれの場合も鈍頭形状の再付着は鈍頭下流において \( C_l=0 \) の増加とともに大きくなくなっている。ところで、\( R_i/R_o=0.95 \) の場合には流体力が見られる。\( R_i/R_o=0.94 \) の場合にはスリットが確認されているが、現象が不安定で、存在領域が小さいことから図示することが困難であった。
図 4 に運動量係数 $C_p$ と抗力係数 $C_d$ の関係を示す。本図のパラメータは $R/Re$ である。ただし、本図の $C_d$ は圧力分布を積分して求めた値であり、噴流の運動量変化を考慮されていない。$R/Re=0.93$ の場合、$C_d$ が増加するに伴い、剣離せん断層の再付着が生じる。これより、圧力係数が変化する。圧力分布の強制再付着の状態を考慮する際に、壁面圧力の变化を考慮することが重要である。

図 5 は $R/Re=0.9$, $C_p=0.9$ 付近で計測された剣離流れおよび剣離せん断層の強制再付着流れの典型的な圧力分布を示すが、本図では剣離せん断層の強制再付着流れの典型的な圧力分布を示す。なお、剣離せん断層の強制再付着流れの圧力分布を考慮する際には、噴流の運動量変化を考慮することが重要である。

図 6 は圧力分布の強制再付着流れの典型的な圧力分布を示す。なお、圧力分布の強制再付着流れの典型例を示す。なお、圧力分布の強制再付着流れの圧力分布を考慮する際には、噴流の運動量変化を考慮することが重要である。

図 7 は圧力分布の強制再付着流れの典型的な圧力分布を示す。なお、圧力分布の強制再付着流れの圧力分布を考慮する際には、噴流の運動量変化を考慮することが重要である。

図 8 は圧力分布の強制再付着流れの典型的な圧力分布を示す。なお、圧力分布の強制再付着流れの圧力分布を考慮する際には、噴流の運動量変化を考慮することが重要である。

5. 結論

本研究では圧力分布を用いて剣離せん断層の強制再付着流れの典型的な圧力分布を示す。なお、圧力分布の強制再付着流れの圧力分布を考慮する際には、噴流の運動量変化を考慮することが重要である。