103 線形近似に基づく不定形き裂長さに対する拡張型有限要素法解析

Extended Finite Element Method Analysis for Uncertain Crack Length Based on Linear Approximation

○正 中住昭吾（産業技術総合研究所）
正 鈴木隆之（産業技術総合研究所）
Shogo NAKASUMI, AIST, East1-2-1, Namiki, Tsukuba, Ibaraki
Takayuki SUZUKI, AIST, East1-2-1, Namiki, Tsukuba, Ibaraki

In this research, an evaluation method which considers the uncertainty of crack length is presented about the analysis of the crack structure which uses the extended finite element method (XFEM). In the presented method, Taylor's expansion of the stiffness matrix is carried out around the definitive crack tip position. As a result, suitable displacement is obtained by the linear approximation and/or the quadratic approximation.

Key Words: extended finite element method, linear approximation, uncertainty, crack

1. 緒言

産業製品の寿命評価に関し、現実的な不確定性の観点から、確率統計的な扱いが求められている。この様々な概念を有限要素解析に適用したものを確率有限要素法[1]が提案されている。この方法では、物体形状の不確定性を、節点座標の期待値（平均値）からの変動量として捉える。この変動量は、空間上の位置の変動を表す。

一方、所定の解析領域を表現する必要のない拡張型有限要素法(XFEM)を提案されている[2]。この計算方法によれば、変形場を表現するための要素を構成する際に、変形場を確定型有限要素法では節点座標に対応させたものとし、本提案手法では不確定性が環境に反映される。アイソパラメトリック画像に伴うヤコビ行列は不変であり、式展開が容易になることを示す可能性がある。

2. 本提案手法の定式化の導出

2-1 ティーザー展開による近似

き裂問題の有限要素解析を行う際、剛性行列K、変位ベクトルU、荷重ベクトルFが確定値であるとし、次式の釣合い方程式が成立するものとする。

\[KU = F \]

次に剛性行列Kと変位ベクトルUがき裂長さの不確定性の影響を受けた仮定し、その不確定性を表現するパラメータを\(\varepsilon \)とする。式(1)を\(\varepsilon \)で偏微分することにより次式を得る。

\[\frac{\partial U}{\partial \varepsilon} = -K^{-1}(\partial K/\partial \varepsilon)U, \quad \frac{\partial^2 U}{\partial \varepsilon^2} = -K^{-1}(2\partial K/\partial \varepsilon + \partial^2 K/\partial \varepsilon^2)U \]

\(\varepsilon \)の平均値（または期待値）を\(\bar{\varepsilon} \)と表記し、\(\varepsilon \)における解Uを、\(\bar{U} \)を基底の周りで2次近似を展開することにより次式で近似することができる。

\[U(\varepsilon) \approx \bar{U} + \frac{\partial U}{\partial \bar{\varepsilon}}(\varepsilon-\bar{\varepsilon}) + \frac{1}{2!} \frac{\partial^2 U}{\partial \bar{\varepsilon}^2}(\varepsilon-\bar{\varepsilon})^2 \]

3. 結果

(3)の意味するところは、「不確定性の平均値（\(\bar{\varepsilon} \)）とその一次微分 \(\bar{U}/\partial \bar{\varepsilon} \)及び二次微分 \(\bar{U}^2/\partial \varepsilon^2 \)を得たならば、\(\bar{\varepsilon} \)の近傍をみなせる\(\varepsilon \)における解

\[U(\varepsilon) \approx \bar{U}(\bar{\varepsilon}) \quad \text{および} \quad \frac{\partial U}{\partial \varepsilon} \approx \frac{\partial U}{\partial \bar{\varepsilon}} \]

図1 き裂場周辺の座標系

表1 き裂場周辺の座標系

NII-Electronic Library Service
2-3 特異関数及び剛性行列の微分導出

図1に示す様にき裂がx軸に並行な状態を仮定すると、「き裂先端の変位量」は「き裂端のx座標の変位量」と同値になる。そしてその変位率は、特異関数ψ_{I}(x)のき裂端座標x_cによる微分に帰着する。従来に基づく式展開より

\[\frac{\partial \psi_{I}}{\partial x} = -\frac{\partial \psi_{L}}{\partial x} \quad (I = 1-4) \]

の関係が成り立つことがわかる。\(\partial \psi_{I}/\partial x \ (I = 1-4) \)は具体的に次式となる。

\[\frac{\partial \psi_{1}}{\partial x} = \frac{1}{2r} \sin \frac{\theta}{2} \]

\[\frac{\partial \psi_{2}}{\partial x} = \frac{1}{2r} \cos \frac{\theta}{2} \]

\[\frac{\partial \psi_{3}}{\partial x} = \frac{1}{r} \cos \frac{\theta}{2} \sin \theta \]

\[\frac{\partial \psi_{4}}{\partial x} = \frac{1}{r} \cos \frac{\theta}{2} \sin \theta \]

また二次微分も同様の手続きで求まる。下記に結果を示す。

\[\frac{\partial^{2} \psi_{1}}{\partial x^{2}} = \frac{3}{4r} \sin \frac{\theta}{2} \]

\[\frac{\partial^{2} \psi_{2}}{\partial x^{2}} = \frac{3}{4r} \cos \frac{\theta}{2} \]

\[\frac{\partial^{2} \psi_{3}}{\partial x^{2}} = \frac{3}{4r} \cos \frac{\theta}{2} \sin \theta \]

\[\frac{\partial^{2} \psi_{4}}{\partial x^{2}} = \frac{3}{4r} \cos \frac{\theta}{2} \sin \theta \]

全体剛性行列の成分をき裂端座標x_cで微分すると、特異関数をエンリッシュした筋を持つ要素剛性行列 \(K_{m} \) のみが非ゼロの成分を持つこととなり、その値は次式となる。

\[\frac{\partial K_{m}}{\partial x} = -d_{i} \left(\frac{\partial N_{j} \partial \psi_{k}}{\partial x} + N_{j} \frac{\partial \psi_{k}}{\partial x} \right) \left(\frac{\partial N_{l} \partial \psi_{i}}{\partial x} + N_{l} \frac{\partial \psi_{i}}{\partial x} \right) \]

\[-d_{i} \left(\frac{\partial N_{j} \partial \psi_{k}}{\partial x} + N_{j} \frac{\partial \psi_{k}}{\partial x} \right) \left(\frac{\partial N_{l} \partial \psi_{i}}{\partial x} + N_{l} \frac{\partial \psi_{i}}{\partial x} \right) \]

\[-d_{i} \left(\frac{\partial N_{j} \partial \psi_{k}}{\partial x} + N_{j} \frac{\partial \psi_{k}}{\partial x} \right) \left(\frac{\partial N_{l} \partial \psi_{i}}{\partial x} + N_{l} \frac{\partial \psi_{i}}{\partial x} \right) \]

\[-d_{i} \left(\frac{\partial N_{j} \partial \psi_{k}}{\partial x} + N_{j} \frac{\partial \psi_{k}}{\partial x} \right) \left(\frac{\partial N_{l} \partial \psi_{i}}{\partial x} + N_{l} \frac{\partial \psi_{i}}{\partial x} \right) \]

この手続きにて(2a)式の \(\partial K/\partial \varepsilon \) 及び(2b)式の \(\partial^{2} K/\partial \varepsilon^{2} \) を評価することができる。

3. 数値解析例

中央にき裂のある帯板の一様引張り問題（図2）を解く。評価は中央部の開口変位 \(\delta \) でのみ行われた。き裂長さaが確定値 \(\delta \) の場合におけるき裂周辺の変動とその変形を図3示す。また(2a)式の一次微分解、及び(2b)式の二次微分解に基づくき裂周辺の変形を図4に示す。き裂端周辺にて変位が生じていることが確認できる。

![図2 中央にき裂のある帯板の一様引張り](image)

\[L = 3 \]

\[W = 2 \]

\[a = 1 \]

\[\sigma = 1 \]

4. 結言

本論文では、揚張型有限要素法（XFEM）を用いたき裂の解析において、剛性行列をき裂端位置周りにテーラー展開したことで、き裂長さの不確定性に対応した変位を線形近似法は二乗近似法で得る方法を提案した。提案手法は変動量が小さい範囲では良好な近似を示した。

参考文献

(1) 中塚満、久田俊明、確率有限要素入門、培風館、1985

(3) 岡村弘之，線形破壊力学入門、培風館