theoretical. Displacement fields around the interface edge were measured by means of high-sensitivity moire interferometry. The slope of the log-log plot between the displacement and the coordinate in ceramic side decreased with decreasing the coordinate. The slope was in between 0.6 and 0.7. This slope is smaller than the predicted value using elastic/elastic materials interface edge theory which is calculated from the elastic modulus of silicon nitride and Cu. Intensification of stress concentration around the interface edge due to the plastic deformation of the interlayer was clearly observed experimentally and illustrated based on the analysis. The stress value near the interface in ceramic under the external stress of 273 MPa was about four times of the stress value at the same location under the external stress of 132 MPa which is only the half value of 273 MPa as an external stress. The reason of the different stress concentration between these external stress of 132 and 273 MPa is considered that the different scale of the plastic deformation around the interface edge gives the elastic singularity and the elastic/plastic singularity for each external stress. The linear hardening interface theory and the power-law hardening/ rigid interface theory can predict smaller index of singularity compared with the elastic interface theory. The external stress level at which the elastic/plastic effects emerged in the experimental results coincided with the one at the evolution of the plastic zone in the interlayer especially along the interface. The yielding scale factor is considered to control the evolution of the elastic/plastic singularity around the interface edge through the plastic zone size along the interface.

IC-S8: Finite Element Stress Analysis and Strength Evaluation of Stepped-lap Adhesive Joint under Static Bending Moments
T. SAWA, Hiroshima University; K. ICHIKAWA, Yamanashi University; I. HIGUCHI, Kofu Josai High School, E-mail: sawa@mech.hiroshima-u.ac.jp

Stress distributions in stepped-lap adhesive joints of similar adherends subjected to static bending moments are analyzed using three-dimensional finite-element calculations. The effects of Young's modulus of the adhesive, adhesive thickness and number of steps on the stress distributions at the adhesive interfaces are examined in elastic range. As the results, it is found that the maximum stress occurs at the edge of the interface in the butted adhesive layer. It is observed that the stress component in the peel direction is highest among all the stress components. It is found that the maximum value of the stress decreases as the thickness of butted adhesive layer increases and as Young's modulus of the adhesive decreases. It is also observed the maximum value of stress decreases as the number of steps increases. For verification of the FEM calculations, the experiments were carried out to measure the strains in the joints using strain gauges and the joint strength. Fairly good agreements are observed between the numerical and the measured results.

IC-S9: Axisymmetric Stress Analysis and Strength of Bonded Shrink-fitted Joints of Solid Shafts subjected to Torsional Loads
T. SAWA, Hiroshima University; M. YONENO, Henkel Locstite (Japan) Corp., E-mail: sawa@mech.hiroshima-u.ac.jp

This paper deals with stress analysis and strength evaluation of bonded shrink fitted joints subjected to torsion. The stress distributions in the adhesive layer of bonded shrink fitted joints are analyzed by using the axisymmetric theory of elasticity when an external torsion is applied to the upper end of shaft. The effect of the outer diameter and the stiffness of rings on the interface stress distributions are clarified by the numerical calculations. Using the interface stress distributions, joint strength is predicted. In addition, joint strength was measured experimentally. It is seen that a rupture of adhesive layer is initiated from the upper edge of the interfaces when a torsion is applied to the upper end of shaft. The numerical results are in fairly good agreement with the experimental results. It is found that the joint strength of bonded shrink fitted joints is greater than that of shrink fitted joints.

ICS-10: Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat
M. IWASA, Hitachi Ltd., E-mail: masaaki.iwasa.mq@hitachi.com

The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM shaft for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated using by stress singularity parameters.

ICS-11: Identification of Debond Size in Adhesively Bonded Lap Joint by Inverse Method
Y. NAKANO, Sareta National College of Technology; M. KATSUO, Shonan Institute of Technology, E-mail: yuichi@mech.sareta-dr.ac.jp

This study deals with a method for identification of size of a debond which may be included in an adhesively bonded lap joint by the inverse analysis. Firstly, the joint which includes a debond is kept under some uniform temperature change and a thermal displacement distribution of an upper surface of the joint is measured simply using an electric micrometer. Secondly, the displacement distribution is obtained numerically from the initial assumptions of size and location of a debond using the two-dimensional thermal stress and distribution analysis. Finally, the size and location of a debond are determined inverse through minimizing the residual between the measured and numerically obtained displacements. By comparing the numerically estimated size and location of a debond with the corresponding measured ones, it is shown that the inverse method proposed in this study has an applicability for identification of a debond in an adhesively bonded lap joint.

ICS-12: Bonding Dissimilar Materials by Exposure to an H2O Ion Beam
Y. SETOMOTO, S. YAMASHITA, University of Hyogo; H. UEEDA, K. ITOGAWA, Tokai Rika Co., Ltd.; T. HATTORI, University of Hyogo, E-mail: yutaka@loesti-u-hyogo.ac.jp

The authors studied a bonding technology that uses an H2O ion beam to produce an OH radical on the materials to be bonded. This technology is useful for Microsystems since it does not require the materials be heated to a high temperature or compressed to a high pressure and hence does not remarkably deteriorate the characteristics of the materials. To evaluate the usefulness of this technology, we prepared a specimen by producing an OH radical on a PTFE sheet and sputtering Cr over the sheet. Using this specimen, we measured the adhesion strength between the PTFE sheet and Cr layer. We also measured the difference in wetness and surface roughness of the PTFE sheet between the area exposed to the H2O ion beam and an unexposed area.

ICS-13: Thermal Stress Analysis of Multi-Layered Electronic Assemblies
M. KATSUO, Shonan Institute of Technology; Y. NAKANO, Sareta National College of Technology,