関西支部講演会講演論文集
Online ISSN : 2424-2756
会議情報
222 不均質平板の熱的・力学的不確定性を考慮した熱弾性問題の確率論的解析
菅野 良弘菅野 敏広千葉 良一
著者情報
会議録・要旨集 フリー

p. _2-49_-_2-50_

詳細
抄録
A stochastic temperature solution is derived for the heat conduction problem in a nonhomogeneous plate with random thermal conductivity by the perturbation method and the Laplace transform. The nonhomogeneous plate has the exponential variations in the thermal conductivity and mechanical properties through the plate thickness and is heated by the prescribed deterministic temperature on the plate surface. A stochastic thermal stress problem in the nonhomogneous plate is analysed for the random thermal conductivity or the random coefficient of linear thermal expansion by the reported thermal stress expression by one of present authors. Numerical results of the variance of thermal stress are presented for the case that the randomness in the thermal conductivity and coefficient of linear thermal expansion is assumed to be a uniform distribution.
著者関連情報
© 2003 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top