境界要素法を用いた部分的加熱を受ける弾性体の境界値逆問題解析

Boundary Value Inverse Analysis in the Elastic Body Subjected to Partial Heating
by the Boundary Element Method

正 古川 俊雄（京工織大）
学 辻出孝博（京工織大院）

Toshio FURUKAWA, Kyoto Institute of Technology, Goshokaidocho, Matsugasaki, Sakyo-ku, Kyoto 606-8585
Takahiro TSUJINISHI, Kyoto Institute of Technology

1. 緒 言

逆問題には、さまざまな誤差が解に大きな影響を及ぼす非
適切性という困難がある。境界値逆問題を考えると、未知
境界値を同定するための方程式の係数マトリックスが悪条
件となるため、そのままでは良い解を得ることはできない。
そこで、種々の適切性手法が提案されている。本研究で
は、変位適切性解による係数マトリックスのランクを低減
させることで適切化を行い、弾性体の変形境界において
観測された境界値から、その変形体に与えられている負荷
を推定するという境界値逆問題について、意味ある解を導
出することを目的とする。

2. 解析対象

図1のようなG1面に部分加熱を受ける板の平面ひず
み問題を考える。順解析においてすべての境界条件を求
め、そのうち、境界Γ2を境界値が未知である完全定義境界
とし、境界Γ4を過剰定義境界とすることで、境界Γ1の過剰
に与えた既知量を用いて境界Γ2の未知境界条件を逆問題
解く。

![図1 弾性体を部分加熱]

3. 境界値問題の数値解法

熱伝導境界値問題に対する離散化を通じて用いる
と、次のようなマトリックス方程式が得られる。

\[\begin{bmatrix} H \end{bmatrix} [T] = \begin{bmatrix} G \end{bmatrix} [q] \] (1)

ここで、\([T]\), \([q]\)はそれぞれ温度及びその法線方向方向の
節点値からなるベクトルである。また、熱伝導問題において
も、熱伝導問題において求められる \([T]\), \([q]\)を用いて次の
ようなマトリックス方程式が得られる。

\[\begin{bmatrix} H \end{bmatrix} [u] = \begin{bmatrix} G \end{bmatrix} [p] + \begin{bmatrix} H_p \end{bmatrix} [T] - \begin{bmatrix} G \end{bmatrix} [q] \] (2)

ここで、\([u]\), \([p]\)は変位及び表面力の節点値からなる。
これらの節点値のうち未知境界値を左辺に既知境界値を左
辺にまとめてことにより、式(1), 式(2)は共に下のような形
の未知成分に関する連立一次方程式で表すことができる。

\[\begin{bmatrix} A \end{bmatrix} [x] = \begin{bmatrix} b \end{bmatrix} \] (3)

ここに、\([A]\)は未知成分に関連する要素からなる係数マ
トリックス、また\([q]\)は未知境界値、\([b]\)は既知量からなるベク
トルである。

4. ランクの低減法

逆問題解析を考えたとき、式(3)における行列\([A]\)は悪条
件となり、適切化を行う必要がある。そこで、\(M \times N\)の行列
\([A]\)を次のように変位適切性解分する。

\[\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} [L] \end{bmatrix} [P] \] (4)

このとき、\([L]\)は\([A]\)の特異値\([K_r = 1 - R] \)を代表成分にも
他の要素はすべて\(G\)の\(M \times N\)行列である。

ここで、最適ランクを決定するための2つの指標を使
す。

\[\text{cond}(A) = \begin{bmatrix} K \end{bmatrix} \] (5)

で与えられる変量はノイズが加わったときに、解の変化
にどのくらい拡大されるかを示す指標となる。次に、ラン
ク低減による残差\(E_p\)を行列\([A]\)のラクを低減したときに
得られる解ベクトル\([b]\)を用いて次のように定義する。

\[E_p = \begin{bmatrix} [P] x \end{bmatrix} - \begin{bmatrix} b \end{bmatrix} \] (6)

以上に示した変量、残差とランクの関係から評価関数
などを用いて適最適解値を決定し、求める温度、変位および
応力を求める。

5. 解析

図2 (a), (b) に、定常熱伝導逆問題解析における、ランクと
条件数、残差の関係を示し、図3にフジランク、最適ランク
における解析結果を示す。

図日本械学会論文誌No.064-1巻6・3 hairyi部第81期論文講演会)