水素非定常噴流の流動および混合気形成過程

Flow and Mixture-Formation Process of an Unsteady Hydrogen Jet

水素エンジンでは高出力・高効率化を目指して、直接噴射式に関する研究が進められている。この方式では、点火時ににおける混合気分布がその後の燃焼に大きく影響する。そこで本研究では、レーザシート可視化および粒子画像計測法（PIV）により、水素非定常噴流の発達および噴流内へのエントレイン流動を調査し、窒素噴流と比較して混合気形成過程について考察する。

1 実験装置および方法

計測対象の非定常噴流は、圧力pで窒素を充填した直径90 mm、高さ170 mmの容器中に、水素（H2）および窒素（N2）を直径0.5 mmの単噴孔ノズルから圧力pで噴射して形成する。表1に喷射条件を示す。表中の20は可視化画像により求めた噴流の拡がり角である。図1に光学系の概略を示す。光路にはNd-YVO4液体発振レーザ（波長532 nm）を用い、容器内に浮遊させたTiO2粒子の散乱像を高速度ビデオカメラ（Phantom V7.0）で計測する。その際、撮影速度は34,000 fps、撮影時間は5 msとした。また、PIVのウィンドウサイズは1.7 mm（16 pixel）とした。オーバーラップは50 %とした。なお、本実験で用いたインジェクタの喷射方向はインジェクタ中心軸に対して7°傾いている。

3 実験結果

まず、対象とした非定常噴流の発達状況を明らかにするために、噴流全体をレーザシートにより可視化する。図2に水素および窒素噴流（p=8 MPa, p=1.0 MPa）の断面積を噴射後の時刻に対して示す。これにより、水素噴流の方が噴流上流部から噴流境界に凹凸が生じており、両噴流の取り込みが活発であることを示唆している。また、図3は各条件における先端到達距離xの時間変化である。同一噴流種においては、pの増加およびpの減少によりxは大きくなる。また、等しいp、pで、水素噴流の方が発達はやや早いことがわかる。

つきに、噴流境界近傍の流動を捉えるために拡大撮影を行い、得られた画像に基づいてPIV解析を実施する。図4は水素および窒素噴流（p=8 MPa, p=1.0 MPa）のt=0.8 msにおける流速分布であり、位置を変えて計測した結果を組み合わせて示す。これによって、水素噴流の方が上流のエントレイン流が大きいことがわかる。ノズル出口における体積流量は噴流密度が小さいほど大きいので、同様の噴射・空気条件でも、水素噴流の方が先端到達距離も拡がり角も大きくなる。

4 まとめ

以上、水素非定常噴流をレーザシートにより可視化するとともに、PIVにより周囲気体の流速分布を計測し、窒素噴流と比較した。得られた結果より、水素噴流の発達と空気導入過程の特徴を明らかにした。

参考文献

(1) 石倉・他4名、自動車技術会学術講演前刷集、No.79-06, p.11-16(2006)