摩擦力制御型セミアクティブ制振装置の設計に関する研究

Study of design for vibration control system With semiactive friction force

学 金澤 伸典（明治大）正 下板 陽男（明治大）正 黒田 洋司（明治大）○学 今成 弘志（明治大）

Shinsuke KANAZAWA, Haruo SHIMOSAKA, Yoji KURODA, Hiroshi IMANARI
Meiji University, 1-1-1,Higashi-mita,Tama-ku,Kawasaki-shi,Kanagawa

This paper describes the vibration control system with semiactive friction force using a piezoelectric actuator and the design guideline of the vibration control system. We select five design parameters as follows: the first one is the data sampling frequency, the second one the objective damping ratio, the third one the ratio of the stiffness of main structure to sub structure, the fourth one the ratio of mass of main structure to sub structure, the fifth one the range of friction force. Changing these five parameters respectively, the design condition can be found.

Key Words: Semiactive friction force, piezoelectric actuator, the design guideline

1. はじめに
近年、構造物の制振に関する研究はパッシブ制振、アクティブ制振などが盛んに行われ、人々が居住する住宅をはじめとして、構造ビルや橋梁、研究施設などにも数多く実用化されている。アクティブ型のもののはパッシブ型と比較して大きな制振効果を持つが、電力を必要し機構もより複雑となり、制御の面でも高度な技術を要する場合が多い。また制振装置は既存の建物にも利用することが十分に考えられ、それゆえ制振装置を設計する際には、さまざまな設計パラメータを適切に選定することが必要となってくる。
本研究では、上記の事情を考慮し次のことを行うことを目的とする。
1. アクティブ型制振装置の一例として、制御部分の機構および制御方式が簡易であるか否か既存の構造物への設置が比較的容易で低消費電力な摩擦力制御型セミアクティブ制振装置の作成。
2. 制振装置を構造物に設置する際、装置設計の目安となる設計指針の提案。

2. 装置の原理と実験装置
2.1 実験機構物 本研究で作成した実験構造物のモデルをFig.1に示す。この構造物は質量とそれを支持する4本の柱、制振装置とそれを支える4本の柱で構成され、振動方向は水平方向であり外形寸法は500×700×1125mmである。
2.2 摩擦力制御型制振装置 本研究で作成した制振装置をFig.2, Fig.3に示す。この制振装置は建物に設置された摩擦板を、ピエゾアクチュエータにより板パネル摩擦材を介して2方向から押さえつける。アクチュエータを外側からボルトに押しつけ、これにより摩擦板パネル摩擦材を仮固定し、アクチュエータの伸縮を即座に押付け力に変換することが可能。さらにせん断応力がかかるのを防ぐ機構となっている。

Fig1. Experimental structure model

Fig2. Friction controllable device

Fig3 Mechanism of Friction controllable device

Fig4 Analytical model of building
3. 運動解析モデル

本研究で用いた実験構造物の運動解析モデルをFig.3.1に示す。付加系（制振装置）m2が、主系の構造物m1に対して滑っている状態をPhase1、m1に対して滑らずに止まれている状態をPhase2としてこのモデルの運動方程式を以下に示す。

(I) Phase1（滑りあり）（Fτ=動摩擦力）

\[m_x x + c_x x + k x + \text{sign}(x - x_0) F_r = -m_2 \dot{x} \] \(\cdots (1) \)

\[m_z x + c_z x + k x - \text{sign}(x - x_0) F_r = -m_2 \dot{z} \] \(\cdots (2) \)

(II) Phase2（滑りなし）

\[(m + m_2) x + (c_x + c_z) x + (k + k_z) x = -(m + m_2) \dot{x} \] \(\cdots (3) \)

(III) Phase2からPhase1への切替条件（Fτ=静止摩擦力）

\[m_x x + c_x x + k x > F_r \] \(\cdots (4) \)

(IV) Phase1からPhase2への切替条件

\[m_z x + c_z x + k x \leq F_r \] \(\cdots (5) \)

4. 制御方法

まず目標減衰係数c*を持つ以下のよう系を考える。

\[m_x x + c x x + k x = -m_2 \dot{x} \] \(\cdots (6) \)

式(6)一式(1)より以下の式を得る。

\[(c^* - c_x x) x = \text{sign}(x - x_0) F_x \] \(\cdots (7) \)

従って目標摩擦力F*は以下の式で表される。

\[F^* = (c^* - c_x x) x / \text{sign}(x - x_0) \] \(\cdots (8) \)

F*の制限は以下のよう設定する。

(I) \(F^* \leq F_{\text{min}} \) の時 \(F_x = F_{\text{min}} \)

(II) \(F_{\text{min}} < F^* \leq F_{\text{max}} \) の時 \(F_x = F^* \)

(III) \(F_{\text{max}} < F^* \) の時 \(F_x = F_{\text{max}} \)

5. 設計指針

摩擦力制御型制振装置を設計する際には、より良い制振効果を得る制振装置を設計するには適切な設計パラメータの選定が必要である。パラメータとして以下の5つに着目した。

1. 制御時間間隔d
2. 制振装置を制御する際の目標減衰比（c*）
3. 強さ比 α (k/m)
4. 速度比 β (m_2/m_1)
5. 最大摩擦力 \(F_{\text{max}} \)

すべてのパラメータの決定には加速度rms値(arms)の最小値 \(\text{arms}_{\text{min}} \)、arms値の変化量 \(\text{darms} \)、最大加速度 \(\text{amax} \)を評価して行なう。

6. シミュレーション及び実験結果

Fig.5の設計フローチャートを用いて実験及びシミュレーションを行った。実験は最大加速度120Gal、1~3Hz、シミュレーションは最大加速度300Gal、1~10Hzに一定の加速度成分を持ったホワイトノイズで行った。

6.1 実験結果

実験はFig.1の構造物(0.86Hz)で行いFig.6はd_t、ζ、βをそれぞれ変化させた時のarms値、およびζ=0.2の時を加速度と変位の波形である。比較のために同条件でシミュレーションを行ったものである。概ね実験とシミュレーションの値が一致している。

6.2 シミュレーション結果

Fig.7は固有振動数の異なる3つの構造物Str1,2,3(1.5,9Hz)でシミュレーションを行ったもので、上記の2-4の設計パラメータを変化させ適度値を選んでいったときのarms値である。Fig.7はStr2(5Hz)の最終的な応答加速度であり、最大加速度 \(\text{amax} \)がおよそ4.5m/s^2になるように \(F_{\text{max}} \)を選定した。

7. まとめ

(1) 作成した制振装置の制振効果を確認した。

(2) シミュレーションと実験値が概ね一致しており設計フローチャートの有用性を確認した。

文献

(1) 小島隆史：制振構造 理論と実際

(2) 超音波発射器を用いた制振系制御型アクティブ・ブレース

による構造物の制振装置に関する基礎的研究 機械96-0710,F(1997),147-151。