810 TFE-NMP系精留器の基本特性
Fundamental Characteristics of Rectifier using TFE-NMP as a working fluid

○学 松下智未（関東学院大）、正 辻森 淳（関東学院大）
Tomomi MATSUSHITA and Atsushi TSUJIMORI
Department of Mechanical Engineering, Kanto-gakuin University
1-50-1 Mitsuurahigashi, Kanazawa-ku, Yokohama, Kanagawa 236-8501, Japan

One of the most effective methods to use waste heat to energy for the field of air conditioning and refrigeration is the use of absorption refrigeration cycle. And Absorption refrigerator is widely used as air conditioning utility in Japan. In this study, focusing on absorption heat pump for air-cooling and heating, TFE-NMP working fluid pair is used. Therefore TFE-NMP working fluid pair need Rectification in the process of generating refrigerant vapor (TFE). This experiment reveals fundamental characteristics of rectifier.

Key Words: Absorption, heat pump, rectification

1. 結言
生活水準の向上に伴い居住空間やオフィス空間での快適性に対する要求が年々増加している。この中で、空気調和は空間内での快適性向上に重要な要素であり、従って空調機や冷凍機などの冷熱機器の拡充に対するニーズが高まっている。現在、日本で広く用いられている空調機器の多くは電気式の機種であるため、これらの機器の需要の伸びに比例して電力消費が増加し、夏冬を問わず電力需要の通過が深刻な問題になっている。
しかしながら、OA機器などとは異なり、冷熱機器は、駆動源として必ずしも電力を必要とするものではなく、電力負荷低減の観点から、近年、熱駆動型の冷熱機器の利用が増加しつつある。

TFE-NMP系は、NH₃-H₂O系と同様に273K以下のヒートポンプ運転が可能であり、H₂O-LiBr系より高圧で動作することから凝縮器や吸収器の空冷化も視野に入るとできる。また、動作圧力が大気圧以下であることから高温ガス取締法の規制を受けないなどの利点があり、次世代の吸収冷凍サイクルの作動媒体として期待されている。しかしながら、NH₃-H₂O系と同様精留操作が必要となるため、今後、精留特性を把握するための研究が進められる必要がある。

そこで、本研究では、動作圧力が比較的低く、ヒートポンプ化が可能なTFE-NMP吸収冷凍サイクルに対し、冷媒（TFE）発生過程での吸収剤（NMP）混入を除去し、純粋冷媒を取り出すために必要な精留器の熱・物質移動特性を把握することを目指す。

Fig.1 Experimental Apparatus

Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>273K</td>
</tr>
<tr>
<td>Pressure</td>
<td>2 atm</td>
</tr>
<tr>
<td>Concentration</td>
<td>50%</td>
</tr>
</tbody>
</table>

日本機械学会関東支部第9期総会講演会講演論文集 [03-3-14,15,横浜市]
Table 1 Experimental Condition

<table>
<thead>
<tr>
<th>Concentration of solution</th>
<th>0.3, 0.4, 0.5, 0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate of solution</td>
<td>1.005, 1.193, 1.380, 1.568</td>
</tr>
</tbody>
</table>

3. 実験結果および考察

Fig.2 に封入濃度別精留器液面濃度分布を示す。またFig.3 に封入濃度別精留器蒸気濃度分布を示す。なお、測定位置はFig.1 の熱電対位置の番号に対応している。Fig.2 より、精留器の液面濃度は精留器入口（測定点1）から出口（測定点5）にかけて低下していることが分かった。

Fig.3 より、精留器の蒸気濃度は精留器蒸気入口（測定点5）から出口（測定点1）にかけて上昇していることが分かった。また封入濃度が下がるにつれ、入口と出口の濃度差が大きくなることが分かった。

これらの図より、精留器内の濃度変化は一様ではなく測定点1から3にかけて急激に濃度変化していることが明らかになった。これは、測定点1から3において効率よく精留操作が行われているためと考えられる。

次に得られた結果より、以下に定義する総括物質移動係数 K と精留効率 R について検討した。

$$m = \rho_n \cdot K(\xi_{\text{in}} - \xi_{\text{out}}) \quad (1)$$

$$R = \frac{\xi_{\text{in}} - \xi_{\text{out}}}{\xi_{\text{in}} - \xi_{\text{out}}} \quad (2)$$

Fig.4 に濃度別精留器液面濃度と総括移動係数の関係を示す。この図から、液面濃度が増加すると総括物質移動係数は増加することが分かった。また封入濃度が高いため総括物質移動係数は大きいことが分かった。

Fig.5 に濃度別精留器液面濃度と精留効率の関係を示す。この図から、液面濃度が高いため精留効率が高いことが分かる。これは、気液接触面積が相対的に大きいためと考えられる。

4. 結言

以上、本研究では、TFE-NMP系精留器を用いてその実験結果より基本的な精留特性を把握することができた。

今後は、より高効率の精留器について検討する予定である。

参考文献

1) 真下 克之：TFE/NMP系（これからの吸収冷凍機用作動媒体）、冷凍、(1993), 72-75
2) 真下 克之、増田 美名、中山 敏男、横本 英次：有機系作動媒体 TFE/NMPの開発と吸収冷凍システムへの応用、第21回空気調和・冷凍連合講演会講演論文集、(1987), 109-112