107 切欠き材／き裂材の疲労限度予測則とその応用
An Evaluation Method for Fatigue Limit for Notched / Cracked Structure and Its Application
○正 宮崎 達二郎 (九大院) 正 野口 博司 (九大工)
正 青野 雄太 (九大工)
Tatsuiro MIYAZAKI, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka
Hiroshi NOGUCHI, Kyushu University
Yuta AONO, Kyushu University

A quantitative prediction method for notch effect in fatigue limit reliability of high strength steels with defects or non-metallic inclusions is proposed with a stress concentration and defect size distribution. Especially in this report, the method can be used for a structure with a deep notch under zero mean stress. And fatigue tests of notched specimens are carried out on quenched-tempered 0.3% carbon steels: whose average Vickers hardness is about 600. Comparing a predicted fatigue limit distribution with experimental data, the applicability of the present method is examined and confirmed.

Key words: Fatigue Limit, Reliability, Notch Effect, Stress Concentration, High Strength Steel, Defect, Non-metallic Inclusion

1. 緒 言
高強度鋼の疲労限度は、その内部および表面に存在する非金屬介在物に大きく影響を受けるため、その評価は困難であった。ところが最近、上記は対する研究によって高強度鋼の疲労限度の下限値を定量的に予測する方法を提案し、種々の条件下でその有効性を確認している (1)。しかしながら、実構造物は応力集中部を有するので、高強度鋼の切欠き材の疲労限度を定量的に予測することは重要であるが、そのような方法は提案されていない。
そこで本研究では、非金屬介在物などの欠陥を有する高強度鋼の疲労限度に及ぼす切欠きの影響を定量的に予測する方法を提案する。また、種々の切欠き半径の切欠きを有するHv ≅ 600の調質鋼の疲労試験を行い、その実験結果と本予測法による結果を比較・検討することにより、本予測法の有効性の確認を行う。

2. 予 测 方 法
まず、非金屬介在物などの異材を有する高強度鋼における切欠き材の疲労限度の予測に際して、図1のように3つの疲労限度σw0、σw1、σw2を導入する。

(1) σw1: 切欠き構造物上の材料の基底のみを考慮した場合の微視的欠陥の停留限界応力。
(2) σw2: 切欠き構造物上の材料の欠陥より発生した微小欠陥の停留限界応力。
(3) σw2: ポルト結欠き (き裂) を有する構造物の疲劳限度 (σw1およびσw2の欠陥 rebelsに対する打切り値)。

ここで、材料中の微視的欠陥が疲労限度に影響を及ぼさない切欠き半径をρs、疲労限度において切欠き底に切欠きを全周にわたって停留後に有するか否かの限界切欠き半径をδs、ρ0と呼ぶ。

2.1 σw1の予測 σw1は、線形切欠き力学を用いて次式で予測を行う。

\[
\sigma_{w1} = \sigma_{w0} \frac{f_N(H_v, \rho, R)}{K_t} \quad (1) \\
\]

\[
f_N(H_v, \rho, R = -1) = \sqrt{1 + \frac{230}{H_v^{1.48} \rho}} \quad (2) \\
\]

ここで、σw0 = 1.6HV、Ktは応力集中係数、Rは応力比である。HVは分布をもつので、σw1も分布をもつことになる。

2.2 σwの予測 HV : kgf/mm²の材料中に√area μmの欠陥が切欠き半径ρmmの切欠き近傍に存在する場合の疲労限度σwを次式で仮定する (2)。

\[
\sigma_{w} = \frac{1.56 \times 240}{FR \sqrt{\text{area}^{1/6}}} \ln(240/HV + 1) \quad (3) \\
\]

\[
FR = \frac{4}{\pi^{5/4}} \left(1 - \frac{2}{\sqrt{\pi}} - \frac{4}{3\pi} \right) \sqrt{\text{area} / \rho \times 10^3} \quad (4) \\
\]

欠陥が切欠き表面に存在する場合は次式で仮定する (3)。

\[
\sigma_{w} = \frac{1.43 \times 240}{FP \sqrt{\text{area}^{1/6}}} \ln(240/HV + 1) \quad (5) \\
\]

\[
FP = 0.963 - 1.497 \sqrt{\text{area} / \rho \times 10^3} \quad (6) \\
\]

HVと√areaは分布をもつのので、σwも分布をもつことになる。

2.3 σwの予測 ρ < ρ0では切欠きき裂としてみなせるので、次式によりσwの評価を行う。

\[
\sigma_{w} = \frac{\Delta K_w}{2F \sqrt{\pi t}} \quad (7) \\
\]

ここで、Fは荷重や試験片形状などによる修正係数である。また、下限応力拡大係数幅ΔKwには次式を用いる。

\[
\Delta K_w = \begin{cases}
0.05HV & (HV < 170) \\
8.5 & (170 < HV < 312) \\
0.7 + 0.025HV & (HV > 312)
\end{cases} \quad (8) \\
\]

3. 疲労試験
3.1 使用材料、試験片形状および試験方法 表1に示す化学成分のSQCを焼入れ(845℃1時間保持水冷)
焼戻し（290℃1時間保持水冷）の熱処理を行い、平均 $H_V \approx 600$ の調質鋼を得た。表2に機械的性質を示す。

図3に試験片形状を示すが、(a)が引張、(b)が引張圧縮疲労試験用である。疲労試験は、通常の試験方法と逐次荷重増加法（応力振幅 $\Delta \sigma_a$ からはじめ、N回の繰返しに耐えた試験片は応力幅を $\Delta \sigma_a$ 上昇させた疲労試験を行い、同様な操作を繰返すまで繰り返す）の2種類である。切欠き深さは $t = 0.5$ mm とし、切欠き半径は引軸曲げで $\rho = 100, 1, 0.2, 0.1, 0.03$ mm とし、引張圧縮では $\rho = 0.3$ mm とした。試験片は、電解研磨で表面層を除去し、加工影響層を取り除いてから実験に用いた。公称応力は切欠き底の最小断面で定義した。

3.2 試験結果
図4に疲労試験により得られた疲労限度と切欠き半径の関係を示す。図5に逐次荷重増加法により求めた個々の試験片の疲労限度のデータを平均ランク法を用いて整理した結果を示す。従来型の疲労試験による疲労限度はほぼ低頻度値を表している。

<table>
<thead>
<tr>
<th>Table 1 Chemical composition (mass %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0.54</td>
</tr>
</tbody>
</table>

4. 予測結果と実験結果の比較、検討
図4に σ_{w1}、 σ_{u1} および σ_{u2} の予測結果をそれぞれ一点線、実線、破線で示す。実験結果と予測結果はほぼ一致している。図5に $\rho = 0.3$ の場合の σ_{w1} と σ_{u1} の分布をそれぞれ一点線と実線で示す。予測結果は、実験結果とよく一致している。

(結言省略)

文
献
(1) 村上敬宜, 金属疲労:微小欠陥と介在物の影響, 豊賢堂(1993)
(2) T.Miyazaki,H.Noguchi,M.Kage, DAMAS(2001), 419