105 ラジカル窒化したマルエージング鋼の疲労特性
Fatigue Properties of Radical Nitrided Maraging Steel

Takashi YAMAKITA, Norio KAWAGOISHI and Eiji KONDO, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065
Kazuhiro MORINO, Tokuyama College of Technology, 3538 Kume Takajyo, shunau, 745-0801
Kazunori FUKADA, Kohan Kogyo, 1394 Nishitoyo, Kudamatsu, 744-0011

Key Words: Fatigue, Nitriding, Maraging Steel, Fracture Mechanism, Fish-eye, Hardness, Brittleness

1 構言
機械および構造物の使用環境の更なる苛酷化や軽量化に伴い高強度鋼の使用が増加している。これらの要求に対応した手法として高強度鋼に表面改質を施すことが行われている。また高強度鋼の更なる高性能化のために表面改質を施す場合もある。しかし、高強度鋼に表面改質を施すと、疲労特性は複雑になり不明な点が多く、実用上注意を要する。

本研究では、実用鋼中最も高強度のマルエージング鋼にラジカル窒化を行い、疲労強度と破壊機構に及ぼす窒化の影響について検討した。

2 材料、試験片および実験方法
用いた材料は、市販の300級マルエージング鋼で、溶体化処理した状態で納入されたものであり、その化学成分をTable1に示す。材料をFig.1に示す形状に機械加工した後、窒化材は窒化処理前に、時効材は時効処理後に表面を約20μm電解研磨した。時効条件は、予備実験を行い、疲労強度が最も高くなる不完全時効状態の480℃、2hの他に6hを選んだ。また窒化も時効が同時に行われるのではなく、内部硬さが同程度になるように、時効条件に対応させた温度480℃、0.5h、1h、2h、5hの合計4種類の時間で行った。

疲労および残留応力の測定は、それぞれ微小硬度計およびX線応力測定装置を用いて行った。疲労試験は、小野式回転曲げ疲労試験機（容量：15N・m、回転数：約50Hz）を用いて、室温大気中で行った。

Table1 Chemical compositions (mass %)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Mo</th>
<th>Co</th>
<th>Al</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.03</td>
<td>0.04</td>
<td>0.002</td>
<td>0.002</td>
<td>18.69</td>
<td>4.89</td>
<td>8.92</td>
<td>0.1</td>
<td>0.91</td>
</tr>
</tbody>
</table>

3 実験結果および考察
Fig.2に1h、5h窒化材の硬さ分布を示す。いずれも化合物層の生成に及ぼした表面の顕著な硬化がみられ、内部にある硬さは減少し、内部硬さはHv650、前後で、時効材のそれとほぼ等しい。

Fig.3に各材のS-N曲線を示す。図中/印は内部破壊であったことを示す。1h、2hおよび5h窒化材の場合、応力比では表面破壊が、低応力下では内部破壊が起こった。これにより、S-N曲線の形状は二段折れ曲がりとなっている。時効材と0.5h窒化材の場合の1点を除き、実験を行った範囲で表面破壊し、S-N曲線も通常の形状をとっている。このように窒化材の場合、破壊機構の変化が生じることもあり、疲労強度に及ぼす窒化時間の影響を評価する場合、このことを考慮する必要がある。

Fig.4は、窒化材の疲労寿命に及ぼす窒化時間の影響を、表面破壊域（σa=1100MPa）と内部破壊域（σa=600MPa）に区別して整理したものである。表面破壊が生じる応力比では1時間程度の変化時間が高い強度を示し、内部破壊が起こる低応力域では窒化時間の影響は小さい。

日本機械学会論文集 N.038-2 ([03-11-1, 九州支部・中国四国支部合同企画] 肖魚島地方講演会)
このように表面破壊域では室温時間が長く、硬質層を深くしても疲労強度は必ずしも上昇しない。これは窒化による延性の低下すなわち窒化層の脆化が原因だと思われる。一方、内部破壊の場合、室温時間の影響が小さいのは次のように考えられる。

Fig.5に内部破壊が生じた1h、2hおよび5hの窒化材の破面写真を示す。いずれも介在物を起点にフィッシュアイ破壊している。そこで内部破壊の起点となった介在物の深さを破断寿命と関係で示したのが、Fig.6である。起点はすべて硬質層より内部である。

Fig.7はフィッシュアイの大きさを代表して、試験片円周方向にしたフィッシュアイの直径2ｂの破断寿命依存性である。試験片円周方向にしたフィッシュアイ直径を2ｂとする2a、2ｂはほぼ1で、フィッシュアイはほぼ円形であった。疲労寿命が長くなる程フィッシュアイは大きくなる。

Fig.8は、フィッシュアイ寸法および介在物寸法から求めた応力拡大係数ΔK_{ef}およびΔK_{inc}の破断寿命依存性である。

以上Fig.5～8に示した、内部破壊に対する結果には室温時間の影響はほとんどみられない。このことから、内部破壊に対する疲労寿命に室温時間の影響が小さないことその理由として、内部破壊が生じる応力域では、硬質層の背景であり、境界近傍における微小な内部裂の伝ばが全寿命の多くを支配し、そこでの硬さはすべての材料でほぼ等しいことが考えられる。

結言、参考文献：省略

Fig.4 N_{f}−t curves

Fig.6 d_{inc}−N_{f} curves

Fig.7 2b−N_{f} curves

Fig.8 ΔK_{inc}−N_{f} curves