307

CIP法を応用した超高速浮動ブッシュ軸受内側油膜の解析

An Application of CIP Method to Analysis in Inner Oil Film of Very High Speed Floating Bush Journal Bearings

○学 笠原 王德(九州工大) 正 昌中 清美(九州大)

Kimito KASAHARA, Kiyoji HATAKENAKA, Kyushu Institute of Technology, 680 - 4 Kawazu, Iizuka, Fukuoka

Key Words: Tribology, Floating Bush Journal Bearings, Inner Oil Film, Axial Oil Film Rapture, CFD, CIP

1. はじめに

浮動ブッシュ軸受は、自動車用によるポーチャージーのような小型高速回転機械の支持軸受に多用される。この軸受はジャーナル軸受の間に薄肉円筒状のブッシュを挿入した構造をしていてFig.1, ブッシュ内部に形成される二枚の油膜のため、ジャーナルの回転に引きずられてブッシュが浮動し回転するという特徴がある。

高速浮動ブッシュ軸受に関する多々良の実験的研究によると、ジャーナル回転速度の上昇とともにいったん発生した不安定振動性が、さらに高速化により増悪する。ジャーナル回転速度が上昇しても浮動ブッシュ回転速度の上昇は抑制される。したがって、ブッシュ直径ではこれらの現象を確認するとともに、軸受端において内側油膜から気泡の放出を観察した。津田ら(6)はこれらの現象が、内側油膜内への空気の込み込みによる油膜幅の縮小に起因することを観察実験から突き止め、この空気の込み込みの特定の回転数に達すると生じ、しかもその際、油膜幅は大幅に縮小することが確認されている。中野ら(7)は、超高速回転数実験において同様の現象を確認し、これらの原因は透気心にあると考えられる。

Koeneke(8)は、これらの実現象を合理的に説明するために、軸方向油膜断面という概念を提唱し、通気心を考慮した内側油膜の解析を、モデル化した流体を用いて行った。そして、ジャーナル回転速度の上昇とともに油膜内の低密度領域が拡大することを示した。Hatakenaka(9)はこれを発展させ、さらに高速浮動ブッシュ軸受の理論性能予測を行う、多々良の実験結果の傾向を説明することに成功した。しかし、予測値と実測値との定量化は大幅に異なり、これらを実際の設計に応用することには困難がみられた。

そこで、実験において観察された特定回転速度における空気の急速な入気を、それらの解析では再現できないことに着目し、この一因が気液界面の曲率半径に反比例する表面張力にあると考えた。しかし、表面張力を考慮できるようにそれらの理論モデルを拡張することは困難である。

このため本研究では、表面張力を考慮した内側油膜の数値解析を目指し、CFD(Computational Fluid Dynamics)の分野で注目されているCIP法(10)を応用して、浮動ブッシュ軸受内側油膜の数値解析を行い、その妥当性を検討する。

2. 数値解析

2.1 解析領域

ブッシュの幅中央に設けた全周油溝より潤滑油を供給すると形成される油膜を取扱う。超高速で回転するジャーナルとそのa倍の速度で回転するブッシュとは同心状態であるとみなし、軸対称を考慮し、半幅油膜のみを解析することにする。

2.2 支配方程式

軸対称の軸受油膜に対し、軸受近似を適用して簡略化した円筒座標系における連続の方程式は

\[
\frac{\partial \nu_x}{\partial t} + \frac{\partial \nu_z}{\partial Z} = 0
\]

(1)

とNavier-Stokes 方程式

\[
\begin{align*}
\frac{\partial \nu_x}{\partial t} + \frac{\partial \nu_y}{\partial Z} &= - \frac{1}{\rho Re} \frac{\partial P}{\partial \eta} + \Psi \\
\frac{\partial \nu_y}{\partial t} + \frac{\partial \nu_z}{\partial Z} &= - \frac{1}{\rho Re} \frac{\partial P}{\partial \eta} + \Psi - \frac{1}{4ASRe} \frac{\partial \nu_z}{\partial \eta}
\end{align*}
\]

(2)

(3)

(4)

を用いる。ここで、\(\eta, \Theta, \tau\) はそれぞれ半径方向、周方向、軸方向の座標、\(\tau\)は時間、\(\nu_x, \nu_y, \nu_z\)はそれぞれ半径方向、周方向、軸方向の油膜速度、\(P\)は油膜密度、\(\Psi\)は粘性係数、\(\rho\)は油膜圧力である。また、\(\Psi\)はすきま、\(A\)は軸受幅径比、\(S\)はソンマフェルト数、\(Re\)は修正レイノルズ数を表す。式(2)の辺第2項は透気心項である。また、密度の移流方程式

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho \nu_x}{\partial Z} + \frac{\partial \rho \nu_y}{\partial \eta} + \frac{\partial \rho \nu_z}{\partial \zeta} = 0
\]

(5)

を併せて用いる。

式(1)～式(5)の定常解を、数値解の時間変化が十分小さくなるまで非定常計算を行う方法によって得るために、式(2)～式(4)の辺は残した。

Fig.1 Very High Speed Floating Bush Journal Bearing

日本機械学会講演論文集 No. 058-1 ['05-3-11, 九州支部第58期総会講演会']

- 95 -
2.3 解析方法
本研究では分離解法を用いる。つまり、式(2)～式(4)を時間項と移流項からなる移流方程式と、時間項、粘性項、遠心力項、コリオリ力項からなる非移流方程式の二つに分離する。

移流方程式の解法にはCIP法を用いる。一方、非移流方程式の解法には有限体積法を用いる。このとき、拡散項、遠心力項、コリオリ力項の時間微分近似にはクランク・ニコルソン法を用いることとする。

3. 結果及び考察
プッシュの回転速度比αを0.1に固定し、ジャーナル回転数νを変化させて計算を行った。式(2)を4次方程に変換し、計算を行う。計算結果を図2に示す。

図3および図4には、ジャーナル対流気体の空気側の速度分布を示す。図3はα=0.1, 0.35, 0.49において示したもので、η−Z平面には図2(a)の密度分布を表した。空気の流入が見られないZ=0において、η方向への粘度変化が見られなかった。一方、空気の流入が見られるZ=0.35と0.49においては、軸と空気との粘度差により、油と空気の界面付近を除く速度勾配が急となり、油側の勾配は緩やかになる。これによりプッシュ内部における軸方向せん断応力ταが油側端で空気層が厚くなるほど小さくなる。

ジャーナル回転速度νに対するプッシュ駆動トルクPθの関係を図4に示す。点線はベッテルの式より算出した回転角心二重円筒に対する駆動トルク(=2πη(1−α))を表す。νが小さいときにはPθは2πη(1−α)に一致し、本解析の結果が妥当であることを確認した。νが増加すると流れ、空気の流入部が拡大するため、Pθの低下する範囲がZ方向に広がり、Pθは減少していく。これらの解析結果の傾向は、モデル化した流体を用いて解析を行ったHatakenakaら(10)と一致している。

今後は表面張力を考慮した解析を行う予定である。

4. 結論
本研究では、CIP法を用いて、浮動プッシュ軸受内側油膜の解析を行い、モデル化した流体を用いる従来の解析結果と同様の結果を得、本解法の妥当性を確認した。

今後は表面張力を考慮した解析を行う予定である。

参考文献
(1) 多々良, 機械, 72-610(1969), 1564.
(2) 藤田, 津田, 機論, 30-11(1985), 838.
(3) 津田ほか2名, 機論, 30-11(1985), 69.
(4) 中野ほか2名, トライポジシヨン設計集(東京 2000-5), D31,277.
(7) 矢部ほか2名, CIP法, 2003, 森北出版.

Fig.2 Density distribution in inner oil film (α=0.1)

Fig.3 Radial distribution of circumferential velocity for ν=10 (α=0.1)

Fig.4 The variation of bush driving torque with respect to journal speed (α=0.1)