1 緒言
流れのはく離・再付着現象は抵抗という従来からの課題のみならず伝熱、物質混合・拡散の促進等への積極的利用が図られている。近年、小型化の進む流体機器では比較的低レイノルズ数の乱流流れが関与してあり、これらを効率よく使用するためには低レイノルズ数における流れ特性を把握する必要がある。本研究では、低レイノルズ数乱流域の流れの特徴を着目し、後方スリット流れ場においてはく離点上流部で周期的なかく乱を与えて、流れ場の応答を可視化・PIV解析から調べ、制御と機構解明を試みる。

2 実験装置及び実験方法
実験には、全長1800mm、流路拡大比1:1.4、ステップ高さ
H=20mm、スパン幅B=350mmの透明アクリル樹脂製の吹込み型後方スリット風洞を用いる。実験装置の概略図をFig.1に示す。上流部沈静槽には、整流板及び板状7:1のノズルを設けた。座標は、ステップ部から流れ方向にx、壁面から高さ方向にy、これらと垂直にスパン中央からzを採用する。
実験におけるレイノルズ数Re=U0/H(主流速度,H:ステップ高さ,v:動粘性係数)=500〜1200である。かく乱源には一辺0.7mmの針金4本を繊り付けた直径D=4mmの円形ロッドや円柱を採用する。これをFig.2に示す。ロッド回転により、周期的なかく乱が流れ境界層を持つ流入流れに与えられる。これらより、かく乱の指標として、かく乱ストロハル数St=fe/H/U0(fe:かく乱周波数)を用いる。

スリット風洞法を利用して流れ場の可視化実験を行う、ステップ端部から上流側20mm(x/H=1.2)、壁面から高さ1mmの位置にモレキュロイ板(厚さ0.07mm、3本を編み合わせたもの)を設置した。可視化用光源は、レフランプ(300W)と可視化用レーザー(波長532nm、出力250mW、ビーム直径1〜1.4mm)を併用し、シリンドリカルレンズを用いて幅約1mm、長さ約230mmの同軸光を通じ流れ場に照射する。撮影カメラは画像サイズ432×320pixel、フレーム速度240fps、シャッター速度1/1000secで約10秒間の撮影を行う。

Fig.1 Schematic diagram of step section

Fig.2 Rod shape

3 実験結果と考察
3.1 可視化画像(x−z平面)
Fig.3−4、Re=1000における渦系の三次元変形をスリット風洞法によって可視化したものである。かく乱なしの場合をFig.3、周期的かく乱(S=1.6)を与えた場合をFig.4に示す。また、静止壁を左側、静止面での流れの変形を示すものを右側の図とする。これらは、レフランプによりx−y平面を照射し、x−z平面の撮影を行っている。
Fig.3 では、流れの容易な流れ場であり、かく乱源に対してはまず二次元的な渦を示し、下流方向に移動するにつれ、次第に正弦波状へと変形(x/H≈8)している。その後、正弦波状の渦は木原ら(1)の研究で観察されたA形へと近い変形(x/H≈13)となり、拡散しながら下流へ流れていった。これらの流れの変形およびスパン方向の波長と定義すると、A形の渦スケールは、渦長l1/H=4.25、渦幅l2/H=2.75であった。

Fig.3 View of x−z plane (non disturbance)

Fig.4 では、かく乱なしの場合と同様に、ステップ端部からはく離した流れが二次元的な渦を形成し、次第に三次元的な渦構造へ変形しつつ下流へ流れていった。実験の結果、x/H=2.5で正弦波状の変形が起こり、x/H≈9でA形の渦を形成するなど、より上流部で変形の挙動が観察できた。

形成されたA形の渦は、千鳥配置を形成しながら下流へと移動していった。また、A形の渦スケールに着目すると、Fig.4よりl1/H=4.0、l2/H=3.5であった。

x−z平面の可視化実験の後、ステップ端部からはく離した渦系が三次元的な挙動を示すことが確認できた。ステップ端部からはく離した流れの挙動は木原ら(1)の結果においても同
様に確認されている。木谷らは、Re ≈ 380 のレイノルズ数領域における渦構造が、A型に近く、下流方向に三角形に配置されていることを確認している。本研究においても上記のレイノルズ数領域の条件を満たしており、また、類似した渦の形状を観察していることから、本実験においても乱れ、再付着流れの基本的な流れ構造を可視化できるといえる。可視化実験により得られた各条件下における渦スケール l₁/H, l₂/H を Table 1 にまとめた。Table 1 より、l₁/H の変化は大きくないが、くか乱ストローハル数が大きくなると共に l₁/H は大きくなり、S₃=0.16 で極大値を持つ。これは、くか乱により渦の合体が誘起されたためと推測できる。

Table 1 Vortex scales

<table>
<thead>
<tr>
<th>Re</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.00</td>
<td>2.5</td>
<td>2.75</td>
</tr>
<tr>
<td>1000</td>
<td>0.16</td>
<td>4.0</td>
<td>3.50</td>
</tr>
<tr>
<td>1000</td>
<td>0.23</td>
<td>4.5</td>
<td>4.00</td>
</tr>
</tbody>
</table>

3.2 可視化画像（x−y 平面）

Re = 1000 においてくか乱ストローハル数 S₃=0.00～0.23 の可視化実験を行った。Fig.5 ～Fig.7 に z/H=0 における x−y 断面の流れの可視化画像を示す。これらは、可視化用レーザーで中央断面（z/H=0）を照射し、x−y 平面の撮影をした。

S₃=0.00（くか乱なし）の場合は Table 1 に示す。スパン端部からは乱した流れは、くか乱せん断層内で遅くかつ遅い波形を現し、再付着点付近（x/R=9.3）で、渦構造を形成し再付着している。また、再付着する直前の渦の大きさは x 方向に 1.5H, y 方向に 0.9H である。

S₃=0.16 の場合は Fig.6 に示す。Fig.5 との比較すると、より上流側で大きな渦が形成され、周囲流体の運行が増加し、再付着点の減少が見られる。このとき、流れが壁面に再付着する再付着点付近（x/R=5.5）に渦構造が 1 回合体する様子を観察できた。再付着する直前の渦の大きさは x 方向に 2.0H, y 方向に 1.2H である。

S₃=0.23 の場合は Fig.7 に示す。S₃=0.16 の場合ではなくく乱せん断層の渦が整然と合体を繰り返しご通過しているのにに対して、S₃=0.23 の場合は渦の追い越しや衝突は、潰れ散らして通過している。ここでスパン中央再付着距離は x/R=6.5 とし、再付着する直前の渦の大きさは x 方向に 1.8H, y 方向に 1.0H である。

可視化実験から、再付着点距離の減少は、くか乱せん断層内で渦の合体数が最も少ない 1 回となるくか乱を与えることが確認していると考えられる。また、渦の大きさで比較しても、より大きいものが再付着点距離の減少効果がある。

Fig.5 View of x−y plane (non disturbance)

3.3 再付着距離とくか乱ストローハル数の関係

Fig.8 に再付着距離とくか乱ストローハル数の関係を示す。Re ≈ 700 の領域ではレイノルズ数の増加と共に、再付着点距離も増加しているので、環流流れ域となっていることがわかる。また、Re=800 で再付着点距離が最長となっている、Re > 800 の領域ではレイノルズ数が大きくなるにつれて、再付着点距離が短くなった。よって、Re=700 ～900 の領域は環流流れ域から環流流れ域へ変わる遷移領域であると考えられる。

また、くか乱ありの条件の再付着点距離はくか乱なしの条件のものより明らかに減少している。特に、くか乱ストローハル数 S₃=0.16 のくか乱が最も再付着点距離を減少させる効果がある。したがって、周期的くか乱は、Re=1000 以下のレイノルズ数域で同様に、くか乱せん断層内の渦の成長・合体及び渦構造の強化作用を促進し再付着点距離の減少に効果があるといえる。

Fig.8 Effect of strouhal numbers on reattachment lengths

4 結論

低レイノルズ数乱流域における後方スパン再付着流れにおいて、くか乱せん断層内でのくか乱が三次元的な挙動を示すことを可視化実験より確認した。

(1) 後方スパン再付着流れ場において、スパン端部からくか乱をした渦系が三次元的な挙動を示すことを可視化実験より確認した。

(2) 周期的くか乱を与えることにより、くか乱せん断層内の渦の成長・合体を促進し、再付着距離を減少させることができる。

(3) くか乱ストローハル数 S₃=0.16 のくか乱を与えた場合に最も再付着距離を減少させる効果があることが確認できた。

参考文献

(1) 木谷、佐々木、安川、前緒：くか乱における三次元渦構造の可視化実験、機論 B51(1985)pp14-16.