パーム油２ブチルエステルのディーゼル燃焼

Diesel Combustion of Palm Oil 2-Butyl Ester

学 伏見 和代（鹿児島大学） ○学 久木崎 洋（鹿児島大学） 正 大高 武士（鹿児島大）
正 木下 英二（鹿児島大） 正 吉本 康文（新潟工科大）

Kazuyu FUSHIMI, Kagoshima University, 1-20-40 Korimoto, Kagoshima-shi, Kagoshima 890-0065
Massashi KUKISAKI, Takeshi OTAKA, Eiji KINOSHITA, Kagoshima University
Yasufumi YOSHIMOTO, Niigata Institute of Technology, 1719 Fujihashi, Kashiwazaki, Niigata 945-1195

Key Words : Diesel engine, Alternative energy, Liquid fuel, Biodiesel, Palm oil, 2-butanol, Butyl ester

Table 1 Properties of test fuels

<table>
<thead>
<tr>
<th>Test fuels</th>
<th>Gas Oil (JIS no.2)</th>
<th>PME</th>
<th>P2BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetane number</td>
<td>56</td>
<td>64.5 a</td>
<td>—</td>
</tr>
<tr>
<td>Net calorific value MJ/kg</td>
<td>43.12</td>
<td>37.04 b</td>
<td>37.72 b</td>
</tr>
<tr>
<td>Density @288K kg/m3</td>
<td>824</td>
<td>876</td>
<td>864</td>
</tr>
<tr>
<td>Kinematic viscosity @313K mm2/s</td>
<td>2.1</td>
<td>4.48</td>
<td>6.19</td>
</tr>
<tr>
<td>Pour point °C</td>
<td>-17.5</td>
<td>12.5</td>
<td>-2.5</td>
</tr>
<tr>
<td>Water mg/kg</td>
<td>—</td>
<td>1606</td>
<td>1836</td>
</tr>
<tr>
<td>C mass %</td>
<td>87.3</td>
<td>76.2 b</td>
<td>77.5 b</td>
</tr>
<tr>
<td>H mass %</td>
<td>12.50</td>
<td>12.4 b</td>
<td>12.6 b</td>
</tr>
<tr>
<td>O mass%</td>
<td>—</td>
<td>11.4 b</td>
<td>9.9 b</td>
</tr>
<tr>
<td>50 % distil. temp. °C</td>
<td>278</td>
<td>329</td>
<td>(352) e</td>
</tr>
<tr>
<td>Stoichiometric air fuel ratio</td>
<td>14.30</td>
<td>12.49</td>
<td>12.80</td>
</tr>
</tbody>
</table>

4. 実験結果および考察

本実験で製造したP2BEの流動点は－2.5℃となり，前述のPbEと比べ2.5℃，またPbEと比べると15℃流動点を改善することができた。P2BEの流動点－2.5℃は夏季使用のJIS 1号軽油におけるJIS规格（JIS K2269）の上限値相当である。P2BEの動粘度はPbEに比べ高かったが，これは燃料の密度を高めたために分子量が大きくなったことが原因と考えられる。PbEおよびP2BEの動粘度は5.83 mm2/s (＠313K) (4)であり，P2BEの動粘度は6.19 mm2/s (＠313K)であるため，分子の直鎖または側鎖構造が与える動粘度への影響は小さいと思われる。したがって，今回用いたP2BEにはトリグリセライド等の高粘度の残余未反応物が幾分含まれていたと考えられる。

また，本実験で用いた全ての供試燃料は，機関を確実に始動することができ，無負荷を含む全ての負荷において2000rpm一定で安定して運転することができた。

図1にBMEP=0.67 MPa（負荷100%）での燃料噴射時期，着火遅れを示す。これらの值はノードル弁およびシリンジ内圧力上昇率から求めるものである。PbEおよびP2BEの燃料噴射時期は軽油よりも0.5 CA程度が早く，これはPbEとP2BEの体積弾性率が軽油より大きいことが原因と考えられる。これまでの研究によるとPbEおよびP2BEの着火遅れはほぼ同様であるが（3），PbE，P2BEに比べ，P2BEは幾分着火遅れ期間が長くなった。これは，P2BEの熱粘度が高いため，若干微粒化が悪くなり，物理的着火遅れが増大する傾向が見られた。
したことが原因の一つと考えられる。

図2にBMEP=0.67 MPaの熱発生率および噴射ノズルのニードルリフトを示す。PMEおよびP2BEは軽油に比べて燃料噴射期間が長くなることがわかる。これは、PME、P2BEの低発熱量が軽油より低く、同じ出力を達するには燃料が余計に必要になるため、燃料噴射期間が長くなったものと思われる。PMEとP2BE間で比較すると、図1で示したC,H,O比をDulongの式を用いて推算した場合、P2BEとPMEと低発熱量の差は僅少であるためニードルリフト傾斜はほぼ同じプロファイルとなった。また、P2BEの燃焼終了時期は上死点後のクランク角が約40度のときであり、全ての供試燃料ではほぼ同じである。

図3に正味熱効率をBTEと排ガス中のHC濃度、CO濃度、Smoke濃度およびNOx濃度を負荷に対してプロットしたものを示す。BTEは全ての供試燃料ではほぼ同じであった。P2BEのHC、CO、Smoke濃度はPMEに比べて増加する傾向にあるが、これは脂肪酸エステルのアルキル基の炭素数が増加するほど、燃料中の酸素含有率が低下し、(表1)。燃焼状態が悪化したためであると考えられる。また、P2BEはPMEに比べて燃焼期が長く、爆発性が悪く、燃料中の不純物の含有率が高いため、P2BEの燃焼状態はPMEより悪く、不完全燃焼割合が高かったため、HC、CO、Smoke濃度が増加したと考えられる。しかし、P2BEはPME同様、HC、CO、Smokeの値を軽油に比べて低減させることが分かった。

NOx濃度においてはPME、P2BEと軽油において違いはほとんど見られなかった。PME、P2BEの最大熱発生率は軽油より低く抑えられているが、着火時期が早く高濃度期間が長くなっているため、NOx濃度に違いはあまり見られなかったと考えられる。

5. 結論
(1) P2BEの流動点は-2.5℃で、PMEの流動点より15℃、P2BEの流動点より2.5℃改善される。
(2) P2BEの着火遅れ期間はPMEに比べて若干長くなるが、軽油に比べると短く、PME同様着火性に優れた燃料である。
(3) P2BEの正味熱効率は、PMEおよび軽油とほぼ同等である。
(4) 排ガス中のHC、COおよびSmokeはPMEに比べると若干高いが、軽油より低減することができる。

以上の結果から、P2BEは流動性が改善され、PME同様燃焼着火性に優れ、排ガス中のHC、COおよびSmokeを軽油より低減することができ、ディーゼル代替燃料として有望である。また、PMEおよびP2BEは軽油やアルコールなど低燃焼性の低いものとの混合など対策が必要である。燃料の違いによる機器の耐久性に関する潜在的な問題については、今後検討が必要である。

結論に、実験には鹿児島大学機械工学科四年生の原口和洋君の協力を得た。ここに記して謝意を表します。

参考文献
(2) 高野 他6名，自技誌，Vol37, No.5, p.89-94 (2006)
(3) 中里 他2名，自技誌，Vol36, No.5, p.69-74 (2005)
(4) 木下 他2名，自技誌，Vol42, No.1, p.225-230 (2011)