細菌数迅速計測装置

Rapid Automatic Bacteria Counter

1. はじめに

近年、食品の安全性確保や品質管理についての社会的関心が高まることにより、食品の微生物検査の重要性が増している。従来、食品などの微生物検査では、寒天培地で細菌を培養して、生存している細菌を算定する培養法が用いられている。しかし、培養法では細菌の生存を見る状態にするために長時間の培養時間を要することから、簡便で迅速に計測することが困難であった。そこで、簡便に自動計測が可能で、さらに迅速な細菌数計測の実現をめざして、食品向けの細菌数迅速計測装置を開発した。以下、その概要について紹介する。

2. 培養法

培養法による細菌数の検査工程を図1に示す。培養法では、ストマッキングにより試料原液を作成した後、前処理として試料原液を3〜4段の10倍段階希釈を行い、各希釈試料原液×2枚（計6枚）を仮植し、恒温（35℃）で24〜48時間の培養を行う。培養後、コロニー生成数がカウントに適している場所（30〜300個）を選定してコロニーカウントを行い計測する。このように、培養法では細菌の培養に長時間を要するため迅速に計測することが困難であり、また、希釈や混染などの分析作業を伴う工程が多いため簡便性も低い。

そこで、本装置では、迅速性を向上するために、培養法を完全に細菌の生存を検出することが可能な蛍光色素で細菌を染色して菌数計測する方法を用い、これに伴う前処理と計測の工程を自動化することにより簡便性を確保した。

3. 細菌検出の原理

図2に細菌を蛍光染色して生存を判別する方法を示す。まず、死亡している細菌（死菌）のみを染める蛍光色素（蛍光1）で細菌を染色する。次に、生存している細菌（生菌）および死菌の両方を染める蛍光色素（蛍光2）で細菌を染色する。そして、染色した細菌に励起光を照射すると、細菌は染色した蛍光色素に発光する。ここで、細菌が死菌の場合は、励起光を当てると蛍光1と蛍光2の2種類の蛍光を発光する。いっぽう、染色した細菌が生菌の場合は、励起光を当てると蛍光1のみ発光する。

このように、細菌の生存状態によって発光する蛍光の種類が決まっているため、細菌に励起光を当てたときに発光する蛍光の組み合わせを測定することで、細菌が死菌か生菌かがわかる。

4. 細菌数迅速計測装置の概要

本装置では、蛍光染色した細菌の個

図1 一般的な培養法による検査工程

[手作業]

試料原液の作成

試料原液の希釈

培養の準備

培養

細数計測

コロニー

塩類25gに

希釈水225mlを

加えて均質化

ストマッキング

10倍100倍1000倍

10倍段階希釈

培地への混釈

恒温保持

コロニーカウント

コロニー発生数

30〜300個を

計測

日本機械学会誌 2008. 12 Vol. 111 No.1081
数を計測するために、フローサイトメトリー法を用いている。フローサイトメトリー法とは、微細な粒子を流体中に分散させ、その流体を細かい流路に流して、個々の粒子を光学的に分析する手法であり、細菌をひとつつ直接検出して細菌の個数を計測することが可能となる。本装置では、フローサイトメトリー法を簡便に行えるようにするために、食品から抽出した試料原液の前処理から計測までの各工程を容器や流路形状に置き換え、使い捨てのカセットの内部に集約している。また、図2に示すように、装置の構成は上部にカセット内で細菌の検出を行う光学系を配置し、下部にカセット内の流動を行う送液系と、装置全体の制御系を配置している。

4.1 前処理から計測までの全工程の自動化を可能にしたカセット方式

図4に示すように、前処理工程については試料原液の食品除去を行ないフィルタ通過部や細菌の蛍光染色を行う染色容器をカセット内に形成している。フィルタ通過部では、細菌よりも大きな寸法の食品除去を除去して計測部の微細流路の目詰まりを防止する。また、染色容器で行われる細菌の蛍光染色の色素は、1回の計測に必要な分量だけカセットに内蔵されている。使用者はカセットに試料原液を注入して、カセットを装置に挿入するだけの簡便な作業を行い、その後、装置が全自動で前処理として食品除去と細菌の蛍光染色を30分で行い、引き続いて計測部で細菌の検出を行う。

4.2 微細流路を用いたフローサイトメトリー法

図4に示したように、本装置ではMEMS (Micro Electro Mechanical Systems)技術の微細加工を用いて微細流路（寸法：長さ 2mm ×幅 100μm ×深さ 20μm）の計測部を形成して、その内部の細い流れに細菌をひとつずつ乗せて直接検出して細菌の個数を計測する。このように、フローサイトメトリー法では細菌数を直接計測するために細菌の培養が不要となる。本装置では前処理が行われた試料原液 1mL を60分間で計測することが可能である。また、使い捨てのカセットに微細流路の計測部を形成することで、送液機構の簡略化および洗浄機構を不要とすることにより、装置の小型化を図った。

5. おわりに

簡便に自動計測が可能で、さらに迅速な細菌数計測の実現を目指して、カセット式の細菌数迅速計測装置を開発した。今回、開発した装置は小型で取り扱いが容易なため、簡便に食品衛生検査を行う環境を提供できると考えている。また、培養法と比較して90分で計測結果が得られるため、さまざまな付加価値を加えた利用方法が期待される。今後も、さらに多くの人々に喜んで使ってもらえるようなものづくりを進めていきたい。