1. 概 要

ディーゼルエンジンは、理論空燃比よりも空気が多い状態（リーチ状態）で燃焼し、ポンプ損失が少なく、圧縮比が高いため、少ない燃料で効率良く燃焼できる。しかし、常時リーチ状態で燃焼するため理論空燃比近傍でのみ機能する三元触媒システムによるNOx（窒素酸化物）とHC（炭化水素）の同時低減が難しい。強化される排出規制に対応するためには新たな技術の必要性が増してきた。ディーゼルエンジンの優れた点はそのままに、従来では難しいとされたNOxを大幅に低減するため、最新の燃焼技術およびDPF（Diesel Particulate Filter）システムに加え、LNT（リーンNOxトラップ触媒）をその性能を引き出す高度なエンジン制御技術を開発した。この技術によりMORエンジンを搭載するエクストレールは、世界で初めて2009年10月から施行された新しい排出ガス規制「ポスト新長期規制（平成21年規制）」に適合することができた。

2. 技術の内容

LNTの性能を十分に活発させるためには、空燃比コントロールと触媒温度コントロールが不可欠である。そのため図1に示すようなLNT、DPFに対する制御要求と各運転モードの状態移を可能とした。通常運転時には、DPF内PM（Particulate Matter）の堆積量に応じて実施されるDPF再生モードに加え、LNTに吸着したNOxを還元するリッチスイッチモード（数時間数数の数値でリッチ空気循環燃焼するため、この操作をリッチスイッチと称している）と吸着安定化した硫黄酸化物を除去する硫黄脱着処理モードで構成される。またこれらのモード要求を正確に検知するためにLNTへのNOx吸着量、硫黄酸化物、触媒の温度などLNT状態量を正確に予測するモデルをコントロール内に付加した。エンジン運転状態およびLNT状態予測に基づき排出ガス処理要求を判断し、最適な吸入空気量および燃料噴射量の制御を行っている。

また、一般に空燃比などの燃焼に影響を与えるパラメータが大きく変化するとエンジン燃焼効率の変化によりエンジン生産トルクの変化を生む。運転中に適応無く、かつ各運転状態に合わせて空燃比をコントロールするためには、モード切替時の吸入空気および燃料噴射量の適切な制御が必要となる。これら課題を解決するため、新式・EGRの動特性（EGRガス中酸素濃度を含む簡易酸素量応答）を考慮したモデル規則型の制御アルゴリズムを適用した。具体的には（図2）、（A）燃焼率変化の補正、（B）EGR中の酸素を考慮した吸入ガス中酸素量応答を推定し、（C）これらに応じて通過の目標空燃比補正値と（D）目標噴射量を演算する。この結果、目標空燃比が急変するリッチスイッチMモードにおいて運転中に適応が無い空燃比制御を実現した。

2.0L直噴ディーゼルエンジンの開発

図1 LNT制御要求と排気波処理システムの状態変動図

図2 空燃比制御の動作の様子

図3 LNTシステムの排気低減効果

3. まとめ

技術の要は、吸着したNOxを予測して適切なタイミングで浄化させること、および運転特性に影響を与えることなくリーチ燃焼を実現することであり、これを実現するためエンジンの動特性と排気波処理システムの状態を予測するモデルに基づく新制御ロジックを開発した。今後もディーゼルエンジンを環境規制の一翼を担う動き源とするため、また、ディーゼルエンジンが更なる環境改善に貢献することを目指して、開発を続けていく。