ダイヤルゲージによる真直度の測定法について（第2報 直線および曲線連鎖法）

宫崎礼文

第1報に引き続き、真直度を測定するダイヤルゲージによる測定法について、特に曲線連鎖法について記載し、測定法および測定結果について述べたもので、曲線の形状を明らかにするため、1個ないし数個のダイヤルゲージを用いる。総論として、

（1）測定のときの最小値を面に対してはいずれの測定法によるも正確なる測定値を示すため、一方々の面の測定を困難とするため、10～20個のダイヤルゲージを用いる必要がある。

（2）測定面においては、面を多角形とし、測定面を少なくする必要があると誤差を大きくとらえないため、面に直角連鎖法においては必ずしもダイヤルゲージの数を増す必要はないが、曲線連鎖法においては増す必要がある。

（3）pを増すことにより、より正確に真直度を定めることができる。

（1）昭29-9 東京大学第3試験発電機について研究、電機論 93号、39-40、41-42。正員、電気工学同電子学会、20件、90号、p.78（昭29号）。

532.526:532.526.4
境界層を考えた圧縮流体のノズル内流れ（第2報 流圧境界層を仮定した理論計算と圧力分布実験結果）

馬杉信次

平圧ノズルを圧縮性体が高圧力で流動するときの流れを第1報と同様な基礎実験と方法で、ただし境界層が広く流れが不圧力であると一元的に扱うと、境界圧力以上の定常的な流れ方は「圧縮ノズル特性数」として次式に示される。

\[\frac{\Delta p}{\rho g_0} = 4 \left(\frac{l}{r_1} \cos \theta_1 + \log \frac{r_1}{r_2} \right) \left(1 + \frac{r_2}{r_1} \right)^2 \left(\frac{r_2}{r_1} \right)^2 \frac{g}{g_0} \]

この式の各項を実験結果に従って修正すると、この型のサイクロ分離器の圧力損失は次式で表される。

\[\Delta p = C \left(\frac{l}{r_1} \cos \theta_1 + \log \frac{r_1}{r_2} \right) \left(1 + \frac{r_2}{r_1} \right)^2 \left(\frac{r_2}{r_1} \right)^2 \frac{g}{g_0} \]

\[C = \text{定数} \]

（1）昭29-9 東京大学第3試験発電機について研究、電機論 93号、39-40、41-42。正員、電気工学同電子学会

532.526:532.526.4
境界層を考えた圧縮流体のノズル内流れ（第3報 先細および末広ノズルの理論計算とシュリーレン写真実験結果）

馬杉信次

前二報に同様な仮定と方法によるノズル内の流れの一次元的解析をさらに伸発状の末広ノズルもしくは先細ノズルに拡張して層流および乱流層界層仮定にたいして理論計算を行なった。また先細ノズルを測定およびシュリーレン写真実験を行なった。その結果 nouvelles に懐案したと考えたノズル端部の流線が層流であるとはまず、さらに、先細ノズルでは層流層が層流であるか、流体は入口（断面）においては通常の局所流れに近い、ある程度以上の流れ、層流と仮定した後に導入し、その平圧ノズルの流れに進む、どのようなことが理論と実験の関係からわかった。

（1）昭29-9 東京大学第3試験発電機について研究、電機論 93号、39-40、41-42。正員、電気工学同電子学会

621.928.6:532.5
案内羽根型サイクロン分離器について（第1報 内部の流れおよび圧力損失について）

上流具貞

サイクロン分離器内の旋回気流を案内羽根型によって作る方法が最近のmulti-bodyの流れを導入する。これは従来の強制流のサイクロン分離器に比べて構造、使用上多くの利点をもっているが、このような方法で作られた旋回気流の特性およびその型のサイクロン分離器の各要素法と特性との関係などの基本的な性質についてはほとんど不明であるので現状における実験を行ない解析およびその特性を求め、まず気流、から求めたこのサイクロンの逆流による圧力損失機器の流動より圧力損失は次式で示される。

\[\Delta p = C \left(\frac{l}{r_1} \cos \theta_1 + \log \frac{r_1}{r_2} \right) \left(1 + \frac{r_2}{r_1} \right)^2 \left(\frac{r_2}{r_1} \right)^2 \frac{g}{g_0} \]

\[C = \text{定数} \]

（1）昭29-9 東京大学第3試験発電機について研究、電機論 93号、39-40、41-42。正員、電気工学同電子学会

621.928.6:532.5
案内羽根型サイクロン分離器について（第2報 粒子の分離および各部寸法と特性との関係について）

上流具貞

案内羽根型サイクロン分離器内の粒子の分離はその流れ状態から考えた案内羽根出口からの粒子の拡散面での同样に、その分析に次の粒子の組み合わせおよび方向の運動時間から分離

（46）
可能な最小粒径の式を求めるときしきのようにする。
\[\delta_{min} = \left\{ \frac{9\mu/(\sin \beta_1 + \frac{r_a}{r_1} \sin \beta_2)}{(n+1) \rho \cos \beta/(1 + \frac{r_a}{r_1})} \cos^2 \beta \right\}^{1/(n-1)} \]

ただし \(n \) は円周速度の変化を表す指数で案内羽根型
では快い \(n = 0 \sim 1 \) である。さらにこの式によ
ってサイクロンの各部寸法を変えた場合の分離効率の
変化はある程度説明することができる。

この型のサイクロン分離器の特長は圧力損失が風速
の自乗にほぼ比例し混合気の濃度、粒径にたいして無
関係であることより分離効率が一般に低く風速が
減るとさらに低くなる傾向があることなどである。各
部の寸法を変えた場合は風速の直線の風速と案内羽根出
口角を変えたときの特性の変化が最大であり、他の部
分の変化は摩擦損失などの関係なくの特性として
は次次の影響を受けるに過ぎないことが実験的にも
明らかである。

（1）昭 28−11−13 九州大学物理科学関係講演会において講演。（2）正
員、九州工業大学。
621.928.6:532.5
案内羽根型サイクロン分離器について（第 3 報 メッシュの型のサイクロン分離器
との比較実験について）

上流具 賢（

案内羽根型サイクロン分離器の取付角度および排気
の方法を変えた場合の内部の流れの状態を重ねて特性な
どから前部の粒子の圧力面の変化を調べ、この結果
排気断面は前部の粒子の軸方向の運動量が排気の風圧
によって流下されるようにできると考えることが
適当であって、さらにこの断面が圧力損失や粒
子の分離におよぼす影響はあまり大きくないのでこと
と実験結果からも明らかになった。

なお前部の選型サイクロン分離器の特長を比較したところ圧力損失は案内
羽根型が従来の型の 3 分の 1 になるが同時に分離効率も
相当低くなことがわかった。

（1）昭 28−11−13 九州大学物理科学関係講演会において講演。（2）正
員、九州工業大学。
621.438−155
半径流ガスタービンの理論的研究（

森 奉夫（

半径流 ガスタービンについて流量係数 \(c_m/U_1 \)、動翼
翼出口半径方向速度比 \(c_m/c_{1m} \)、翼内間隔比 \(p_1/r_1 \)
をパラメータとして、回転数を含めた一般的な効率の
式を導き動翼出口角が与えられている場合、動翼出口
で絶対速度が半径方向に同じ場合などの効率が最大
点の流量係数、反動翼、速度比などを求める式を導き
た。更に翼内間隔比が 0 の場合の各種の特性を計算し
また動翼出口半径方向に流れる場合の効率が最大の
場合とは一致しないことを示した。最後にディーゼル
機関などの変換用に設計した流量 40 NM/h の半径流
ガスタービンについてのべた。

（1）昭 28−4−5 第 30 期culture vol.6 in 会議に講演。（2）正
員、東京工業大学。
662.026:662.612.5
バーナだき燃焼室水冷壁におけるふく射熱
吸収率の分布（

石谷清治（山崎雄司、小泉信吉（

均質ガスが燃焼室内に充填していると仮定して、ガ
ス吹き射ののみによる周間燃焼吸収率のの分布を求め
ると、実際の分布とは一致しない。しかし燃焼室内に
点火源を置いた場合を考えて、点火源からのふく射と
ガス吹き射を合成すると実際の燃焼吸収率の分布に
近い分布をうることができる。この分布はバーナだき
の場合燃焼室内壁の形状や温度条件と関係なく、従来
の係数を用いると過大な値をえる。本文論文では理論上
正しい負荷を与える係数を導入で示している。

（1）昭 28−11−13 九州大学物理科学関係講演会において講演。（2）正
員、九州大学工学部。 （3）正員、筑波大学工学部。
536.23:621.565.945.2
湿温空気中における伝熱（冷却の場合）（

青木成文（

水を含んだ空気が冷却されて、熱伝達と物質移動
が同時に起こる場合の問題については、従来は自然対流
又に重力に依存した強制対流について若干研究されてい
るが、冷却機器や気圧調和に必要なフィンタイプについ
ては全くとりあげていない。

本実験においては、湿温空気中で設計されたフィン
パイプ冷却器に、0.5−40 °C の温度を流し、湿温
冷却を熱伝達をしめすことにより、一定の結果を得
ることができた。すなわち、冷却器表面が空気の体
積以下に低下して蒸発が起こる場合には、熱伝達要
の再考を必要とするが、冷却器の温度
でできることがわかった。これは
のない場合に比べて熱伝達率がいかに変化するかを表す式として

\[\frac{a_{re} - a_{wy}}{a_{re}} = 1 + 2 \frac{H}{t_{a}} \]

なる関係式を導くことができた。ここに \(H \) は吸収
温、\(t_a \) は供給温度、\(a_{re} \) は冷却器、\(a_{wy} \)
は冷却器表面を示すものである。

（1）昭 28−6−1 熱に関する講演会において講演。（2）正
員、九州大学工学部。
533.691.13
バーナ翼列の風どう実験結果（第 1 報）（

藤本武雄（篠田淵治（

この実験はバーナ翼列の 2 次元流れにおける空気
力学的性質を理解するために行ったものである。この
ために吹出し面積 300 mm×500 mm の風どうを使用し

昭和 29 年 7 月