621.923.1-75
円筒研削における自励振動の研究(1)
(第1報)
大 野 進 一(2)
円筒研削における自励振動について実験的検討を加えている。研削における自励振動についてはこれまで実験による裏づけが不足していた。実験の結果つぎのことが明らかかった。(1) 円筒研削においては、被削材頭を大きくし、一度研削された部分の全部または一部が再度研削されるようにし、なるべく切込みまたは切込みを小さくと、大きい振動が発生する。
(2) この場合トローパスカットではらせん状のびびりこんが生じさせた曲げ振動をと、振り曲がり振動または切込みを小さくすると、大きい振動が発生する。
(3) これは振動エネルギーの発生し、振動数が一定値に近づくよりのおずくよう高くなる、原因となる振動振幅の存在しないことを示す理由により自励振動と認められる。(4) この振動は一定の再生作用を発生し、維持される振動である。
(1) 昭 40-10-16 第43期全国大会講演会において講演、原稿受付 昭 43-8-5。本論文は文集276号に掲載の予定。(2) 正員、東京大学生産技術研究所。
621.923.1-75
円筒研削における自励振動の研究(1)
(第2報)
大 野 進 一(2)
第1報において実験的に検討された自励振動に理論的検討を加えている。研削機械の測定における平衡を保つために、平衡点周辺の微小振動の方程式を導き、いわゆる負減衰による自励振動が発生しないことを示している。平衡点の微小周辺運動による供給エネルギーよ求めて系のは安定であると、自励振動が再生作用によって発生することを示している。また振動発生条件について実験結果と定性的および定量的対照を行なっている。振幅が有限のある場合の問題を調べて、びびりこんの断面形状を計算し、断面形状がある無次元数によって一義的に定まることを示している。振幅が有限の時に系にエネルギーよ供給される範囲を求め、振幅が大きくなるときわめて広く振動波の増減の範囲でのみエネルギーを供給されうることを示し、実験結果を裏付けていている。
(1) 昭 40-4-3 第44期全国総会講演会において講演、原稿受付 昭 43-8-5。本論文は文集276号に掲載の予定。(2) 正員、東京大学生産技術研究所。
539.385: 539.374
弾・塑性ねじり問題における一理論解法(1)
半 曰 宏(2)、石川 博将(3)
弾・塑性ねじり問題の解法は、従来弾性ねじり解法に塑性域の出現による新たな条件（降伏条件）を考案し、弾・塑性境界での応力が連続であるとした数値解法に、非線形の応力ひずみ則を用いての数値解法が広く用いられている。筆者は本論文で、解析的な弾・塑性ねじり問題の一理論解法を提案する。従来とは異なる理論構成から、新たな変数を用いた弾性ねじり解法を導き、つまり Saint-Venant のねじり関数を用い、関数 により得られた合せせん断応力 と とを変数とした Laplace の式を満足する数値ねじり関数を用いた解法である。さらに理論を発展させ、弾・塑性ねじり解法を導く。この解法は、全ひずみ理論に基づくものであり、非線形応力ひずみ則に Ramberg-Osgood則を用いると、ねじり関数 とを用いること、ねじり関数 と とについての超幾何級数で表示される。最後に、本解法を簡単な断面（た円、正三角形、近似正方形）に適用している。
(1) 昭 43-9-28 第46期全国大会講演会において講演、原稿受付 昭 43-4-30。本論文は文集276号に掲載の予定。(2)、(3) 正員、北海道大学工学部。