環境にやさしい植物油の軸がり試験による評価

Ball Bearing Life of Biodegradable Vegetable Oils

○正 大野 信義（佐賀大理工）　Md. Ziaur Rahman（佐賀大院）

Nobuyoshi OHNO, Saga University, 1 Honjomachi, Saga
Md. Ziaur RAHMAN, Graduate Student, Saga University

潤滑油による土壌汚染、また河川や湖水および海洋汚染防止策の一つとして生分解潤滑油が求められている。その中でも天然植物油の生分解性の高さが注目され、その使用も増大している。本報では、植物油の潤滑性能を評価するため、スラスト玉軸受の寿命試験を行い、既報のパフォーマンス系潤滑油の結果と比較検討した結果および酸化防止剤の性能評価を合わせ行った結果について報告する。

2. 実験方法
2.1 試料油　試料油は菜種油、椿油、オリーブ油、ひまわり油、大豆油等とアミノ酸酸化防止剤（パラフィン酸化防止剤）をそれぞれ1wt%添加した油を使用した。表1に植物油単体の性状を示す。酸化防止剤を添加しても性状にはほとんど影響しないことは確かめてい る。なお、破損個数が2個の試料油については、ワイプル破壊を1個と仮定しL10を算出したので、表2中**付きで表示している。

Table 1 Properties of oils

<table>
<thead>
<tr>
<th>Oil</th>
<th>ρ (g/mL)</th>
<th>v1 mm²/s</th>
<th>α, GPa⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15°C</td>
<td>40°C</td>
<td>100°C</td>
</tr>
<tr>
<td>rapeseed oil</td>
<td>0.919</td>
<td>35.7</td>
<td>8.06</td>
</tr>
<tr>
<td>camellia oil</td>
<td>0.917</td>
<td>39.3</td>
<td>8.28</td>
</tr>
<tr>
<td>olive oil</td>
<td>0.914</td>
<td>39.6</td>
<td>8.24</td>
</tr>
<tr>
<td>castor oil</td>
<td>0.967</td>
<td>241.0</td>
<td>17.50</td>
</tr>
</tbody>
</table>

Fig1 Results of the vegetable oil life test

Table 2 Summary of test results

<table>
<thead>
<tr>
<th>Oil</th>
<th>Additive</th>
<th>Code</th>
<th>L10/L0</th>
<th>A</th>
<th>S%</th>
<th>η/η₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>rapeseed oil</td>
<td></td>
<td>A</td>
<td>2.17</td>
<td>0.90</td>
<td>71.5</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>5.52</td>
<td>0.79</td>
<td>73.5</td>
<td>17.3</td>
</tr>
<tr>
<td>camellia oil</td>
<td>B</td>
<td>AB</td>
<td>11.0</td>
<td>0.94</td>
<td>66.1</td>
<td>4.64</td>
</tr>
<tr>
<td>olive oil</td>
<td>C</td>
<td></td>
<td>6.64</td>
<td>0.90</td>
<td>68.7</td>
<td>13.2</td>
</tr>
<tr>
<td>castor oil</td>
<td>D</td>
<td></td>
<td>24*</td>
<td>0.87</td>
<td>65.8</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Fig2 Results of unfailure rate
図1に90%寿命L_{90/Lo}に及ぼす油種と酸化防止剤の影響、図2に耐破損率(耐破損個数/実験個数)との関係を示す。耐破損個数が少ないためL_{90/Lo}（図1）と未破損率（図2）を勘案し、植物油の性能を評価すれば

植物油単体：ひまし油＞椿油＞オリーブ油＞菜種油

酸化防止剤A：菜種油＞オリーブ油＞ひまし油

酸化防止剤B：オリーブ油＞椿油＞菜種油＞ひまし油の順に長寿命である。また、植物油により添加効果は異なるとはいえ、キニリン系酸化防止剤B添加油がアミン系酸化防止剤A添加油に比べ、軸受寿命が長い。

3.2酸化防止剤の性能評価 ここで使用した植物油は不飽和脂肪酸のグリセリンを主成分としており、酸化劣化が問題となる。ここでは、運転終了後の試料油の粘度増加率をもって酸化防止剤の効果を確認した。図3に各試料油の運転時間と粘度増加率の関係を示す。図では、フレーチング発生で運転停止した実験での平均運転時間と平均粘度増加率で示した。図2に示した倍数と比較して著しく長寿命であり、これによってA値も増加する。ここでは粘度増加は無いものとしてA値を算出した。また、図には先に報告したパラフィン系アルカリの結果も比較のためプロットした。図4の分離度は、ひまし油単体以外は何れもアルカリ系と同一の曲線上に分布するのに対して、図4の90%寿命L_{90}では大きく異なっている。各植物油単体での最適条件では、同一A値で比較すれば、アルカリ油に比べて植物油系列の軸受寿命が長い。特にA=1付近にある菜種油、椿油、オリーブ油において著しく長寿命となっている。同田式振子試験により求めた摩耗係数は菜種油において0.104，椿油0.097，オリーブ油で0.097。一方、鉱油系では0.139であった。ここで使用した植物油の主な粘度成分析は、菜種油でエーテル酸46%、椿油でエーテル酸38%，オリーブ油でオレイン酸72%であり、A=1付近ではその境界潤滑性能の良好さが軸受寿命に影響されたと考えられる。

5. 結言

菜種油、椿油、オリーブ油及びひまし油の軸受寿命試験を行った結果、菜種油、椿油およびオリーブ油ではキニリン系酸化防止剤を使用することで、鉱油系の軸受寿命より長寿命となることが分かった。最後に実験を援助して頂いた当時卒論生または、奥山正之の両君、ならびに酸化防止剤を提供頂いた日本クリーカーケミカル（株）及び光学精工（株）の各位に謝意を表す。

文献

Fig. 5 Relation between oil film formation and film parameter A

次に植物油と鉱油の比較を行った。軸受寿命に膜厚比Aが影響することは多くの実験結果により明らかとなっており、図4にAと90%寿命の関係、図5にAと分離度の関係を示す。なお、図3に示した倍数と比較して著しく長寿命とおり、それに伴ってA値も増加する。ここでは粘度増加が無いものとしてA値を算出した。また、図には先に報告したパラフィン系アルカリの結果も比較のためプロットした。図4の分離度は、ひまし油系以外は何れもアルカリ系と同一の曲線上に分布するのに対して、図4の90%寿命L_{90}では大きく異なっている。各植物油単体での最適条件では、同一A値で比較すれば、鉱油に比べて植物油系列の軸受寿命が長い。特にA=1付近にある菜種油、椿油、オリーブ油において著しく長寿命となっている。同田式振子試験機(M=120g, M=240g)で求めた摩擦係数は菜種油において0.104，椿油で0.097，オリーブ油で0.097。一方，鉱油系では0.139であった。ここで使用した植物油の主な粘度成分析は、菜種油でエーテル酸46%，椿油でオレイン酸38%，オリーブ油でオレイン酸72%であり，A=1付近ではその境界潤滑性能の良好さが軸受寿命に影響したと考えられる。

Fig. 3 Viscosity change of test vegetable oils

Fig. 4 Relation between fatigue life and film parameter A