112 高負荷用浸炭歯車の開発に関する研究
（Cr-Mo-Si鋼の機械的性質と面圧強さ）

Development of Case-Carburized Gears for the High Load-Carrying Capacity
（Mechanical Property and Surface Durability of the Cr-Mo-Si Steel）

○正 中西 勉（宮崎大）准 竹内 隆（宮崎大院）正 高 鋼（宮崎大）

Tsutomu NAKANISHI. Miyazaki University, 1-1, Gakukenibanaadai-nishi, Miyazaki 889-2192
Takashi TAKEUCHI. Student. Graduate School. Miyazaki University
Gang DENG. Miyazaki University

In order to develop the case-carburized gear for the high load-carrying capacity, the relation between the mechanical property of material and the surface durability of gear was studied. The experimental materials were the Cr-Mo-Si steel that the silicon was increased in chemical composition and the JIS Cr-Mo steel. First, the influence of temperature on the mechanical property of material was examined by means of a heating oil bath. Secondly, the effect of material on the surface durability of the gear was investigated by using a 2-roller-type contact fatigue tester. In the Cr-Mo-Si steel test rollers, the following results are obtained in comparison with the Cr-Mo steel test rollers: (1) The decrease value of hardness is low in the heat pattern with the high temperature. (2) The large pit and the spall do not occur under the rolling/sliding contact condition. (3) The endurance limit (the spalling life) is improved.

Key Words : Case-Carburized Gear, Material, Alloy Steel, Mechanical Property, Surface Durability, Roller, Heat Pattern, Hardness, Surface Fatigue

1. まえがき

筆者らは、これまでに歯車装置の大トルク化並びに軽量化の要請（1）に対して用いられている浸炭焼入れ歯車を対象に、近年その歯面強さが問題となっていることと（2）から二円筒面圧基礎実験により浸炭焼入れ材の面圧強さに及ぼす熱処理履歴の影響（3）やショットビニングの影響（4）を明らかにしてきた。本報では、高負荷容量の浸炭焼入れ歯車を開発する目的に、さらに、歯車材種に着目し、具体的には、歯車の変可能な運転条件で歯面温度がその運転性能に影響するほど上昇する場合を想定して、JIS化学成分の浸炭合金鋼（5）に比べ（マルテンサイトの軟化抵抗を増大させる性質などを含む合金元素の）シリコン（6）を増量した浸炭合金鋼（以下 Cr-Mo-Si鋼）と比較のためのJIS化学成分と同一の浸炭合金鋼（以下 Cr-Mo鋼）を低酸素真空溶製した。次に、Cr-Mo-Si鋼並びにCr-Mo鋼の浸炭焼入れ焼造し研削円筒試験片を製作し、様々な熱処理におけるそれぞれの機械的性質（ここでは硬さ）について、恒温槽を用いた加熱保持空冷実験と微小硬度計を用いた硬さ測定により調べた。また、それぞれの円筒試験片の面圧強さについて、二円筒面圧基礎試験機（7）を用いた（歯車対の歯面接触面をシミュレートした）転がり滑り接触実験と実体顕微鏡を用いた接触面状態の観察により調べ、歯車材の受けた熱処理による機械的性質の変化と面圧強さの関連を考察・検討した。

2. 円筒試験片の寸法および材種・加工工程

2.1 円筒試験片の寸法 円筒試験片の形状と寸法を示す。なお、図1において高速側円筒試験片の形状から、二円筒面圧基礎実験時の有効接触幅は、8.5mmとなる。また、円筒試験片の機械的性質を調べる実験では、低速側円筒試験片を円周長さ12〜18mm（20〜30度分）、軸方向長さ7〜8mm（厚さ）に切断して扇形状試験片とし、その試験片の面圧強さに及ぼす熱処理の影響を調べた。

Fig.1 Dimensions of test rollers

日本機械学会No.03-03第3回機械潤滑設計部門講演会講演論文集［03・4・21,22,浦安市］
工を考慮（7）して 4〜5 μmRmax （8）、4 μmRy （9）程度（以下、Cr-Mo-Si 鋼浸炭研削試験片と Cr-Mo 鋼浸炭研削試験片）とした。なお、Cr-Mo-Si 鋼浸炭研削試験片並びに Cr-Mo 鋼浸炭研削試験片のいずれも外周の表面硬さは 770 HV (704HBB) 程度、有効浸炭深さ (550HV の位置) は 1.2 mm 前後。心部硬さ (深さ 2〜4 mm の位置における硬さ) は 440 HV 前後であった。

3. 円筒試験片の機械的性質

3.1 実験目的および実験方法 齒車の運動にともなう歯面温度上昇に関する結果（2）と二円筒圧縮強度実験の結果（3）を考慮して、様々な熱履歴における円筒試験片の硬さを調べた。具体的には、扇形状試験片の加熱実験装置として、油槽方式の恒温槽（323〜523 K）を用いた。また、扇形状試験片の加熱保持空冷実験は、扇形状試験片を恒温槽に入り、油槽の温度を設定温度 (T=383・453・523 K) に保ち、保持時間を所定時間 (0.06 h, 0.60 h, 6.30 h, 63.00 h) とし、その後恒温槽から取り出し空冷を行った。なお、それぞれの扇形状試験片の硬さ、微小硬度計を用いて、表面近傍、断面に分けて測定（試験荷重 2.942 N，保持時間 15 s）した。

3.2 実験結果および考察 図 2 に、それぞれの扇形状試験片の各加熱保持空冷後における硬さの代表例を示す。なお、図 2 (a) は Cr-Mo-Si 鋼浸炭研削試験片で、図 2 (b) は比較のための Cr-Mo 鋼浸炭研削試験片である。また、図 3 に、それぞれの試験片の加熱保持温度とその硬度の変化率 R_d % を示す。ここで、硬さの変化率 R_d は、表面からの深さ d mm において、初期（加熱後）の硬度に対してどの程度硬さが変化したかを表し、R_d が負の数値の場合軟化していることを、大きい数値の場合大きく変化したことを示す。図 2 と図 3 などから、Cr-Mo-Si 鋼浸炭研削試験片の硬さは初期（加熱後）に比べ、383 K の加熱保持空冷後の場合表面から心部において加熱保持時間の履歴に影響されずほとんど変化のないこと、453 K の加熱保持空冷後の場合表面付近において短い加熱保持時間の履歴では初期と同様に変化しないこと、523 K の加熱保持空冷後の場合、表面近傍において短い加熱保持時間の履歴では初期と同様に変化しないこと、523 K の加熱保持空冷後の場合、表面近傍において短い加熱保持時間の履歴では初期と同様に変化しないこと、523 K の加熱保持空冷後の場合、表面近傍において短い加熱保持時間の履歴では初期と同様に変化しないことを示す。
4. 円筒試験片の面圧強さ

4.1 実験目的および実験方法 窓車の運転にともなう歯面損傷に関する結果 (10) と二円筒面圧基礎実験の結果 (3) を考慮して、高負荷条件下における円筒試験片の面圧強さ（表面硬度）を調べた。具体的には、試験機にバッケアップロール式二円筒面圧基礎試験機（低速側円筒試験片・高速側円筒試験片；回転数 2630 rpm・3190 rpm、滑り率 -21.3 %・17.6 %、滑り速度 2.05 m/s）を用い、荷重油に横圧添加剤を含まない SAE30 基油（油温 313 ±1 K（粘度 7.95 ×10^{-6} m²/s、油量 33×10^{-6} m³））を用いた。また、二円筒面圧基礎実験は、円筒試験片対の法線荷重 Fa=5.7・7.9・10.2・12.9・15.9・19.2・26.9 kN、最大接触応力 (11) σ_m=1.19・1.38・1.56・1.72・1.95・2.12・2.54 kPa に保持し、荷重を低速側円筒試験片の繰返し数 N_2=1×10^7 もしくは実験装置の騒音が急増する表面損傷の生じた時点までとした。なお、運転中の外周接触面の温度は、円筒試験片外周接触面上に置いた熱電対を用いて連続的に測定 (10) するとともに、表面状態の変化は運転中の適時に観察・記録した。

4.2 実験結果の概要 表 1 に、Cr-Mo-Si 鋼浸炭研削試験片と Cr-Mo 鋼浸炭研削試験片における二円筒面圧基礎実験の実験条件および結果の概要を示す。また、図 4 に、高負荷条件下の実験終了時における代表的な低速側円筒試験片の外周接触面の状態を示す。なお、表 1 において表面損傷の分類は、その投影面積と等しい面積の円の直径を d として、微小ビット (d<0.1mm)・ビット (0.1mm ≤ d<0.3mm)・ビットおよびスポール (0.3mm ≤ d) とした。表 1 より、面圧強さの低下は、高荷重、高速側における高速側円筒試験片の表面損傷において、微小ビット (d<0.1mm) およびビット (0.1mm ≤ d<0.3mm) について、すべての負荷領域において発生している。また、ビットおよびスポール (0.3mm ≤ d) については、Cr-Mo-Si 鋼浸炭研削試験片の場合 F=26.9 kN (σ_m=2.54 kPa)、N_2=3×10^7 まで全く生じていないこと、一方、Cr-Mo 鋼浸炭研削試験片の場合 F=19.2・26.9 kN (σ_m=2.12・2.54 kPa)、N_2=0.5×10^7・0.2×10^7 で発生していることがわかった。したがって、歯車の運転に支障をきたすようなビット並びにスポールの発生については、Cr-Mo-Si 鋼浸炭研削試験片の場合と Cr-Mo 鋼浸炭研削試験片の場合で明らかに差異のあることがわかった。

<table>
<thead>
<tr>
<th>Normal load F kN/Max.</th>
<th>Hertzian stress σ_m kPa</th>
<th>Type</th>
<th>Test No.</th>
<th>No. of cycles N_2 (1)</th>
<th>Initial surface roughness μ m</th>
<th>Mean surface temperature in running ℃</th>
<th>Appearance of surface damage after running (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7/1.19</td>
<td></td>
<td>Cr-Mo-Si steel (S)</td>
<td>T-01</td>
<td>1.0×10^7</td>
<td>5.9</td>
<td>381</td>
<td>Many</td>
</tr>
<tr>
<td>7.9/1.38</td>
<td></td>
<td>Cr-Mo-Si steel (S)</td>
<td>T-02</td>
<td>1.0×10^7</td>
<td>4.2</td>
<td>400</td>
<td>Slight</td>
</tr>
<tr>
<td>10.2/1.56</td>
<td></td>
<td>Cr-Mo-Si steel (S)</td>
<td>T-04</td>
<td>1.0×10^7</td>
<td>3.4</td>
<td>432</td>
<td>Many</td>
</tr>
<tr>
<td>15.9/1.95</td>
<td></td>
<td>Cr-Mo-Si steel (S)</td>
<td>T-06</td>
<td>1.0×10^7</td>
<td>4.4</td>
<td>471</td>
<td>Many</td>
</tr>
<tr>
<td>26.9/2.54</td>
<td></td>
<td>Cr-Mo-Si steel (S)</td>
<td>T-07</td>
<td>0.3×10^7 (2)</td>
<td>4.2</td>
<td>483</td>
<td>Slight</td>
</tr>
<tr>
<td>5.7/1.19</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-10</td>
<td>1.0×10^7</td>
<td>3.9</td>
<td>453</td>
<td>Many</td>
</tr>
<tr>
<td>7.9/1.38</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-12</td>
<td>1.0×10^7</td>
<td>4.0</td>
<td>393</td>
<td>Many</td>
</tr>
<tr>
<td>10.2/1.56</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-13</td>
<td>1.0×10^7</td>
<td>4.2</td>
<td>417</td>
<td>Many</td>
</tr>
<tr>
<td>15.9/1.95</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-15</td>
<td>1.0×10^7</td>
<td>4.2</td>
<td>451</td>
<td>Slight</td>
</tr>
<tr>
<td>19.2/2.12</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-17</td>
<td>0.5×10^7 (2)</td>
<td>4.1</td>
<td>473</td>
<td>Many</td>
</tr>
<tr>
<td>26.9/2.54</td>
<td></td>
<td>Cr-Mo steel (C)</td>
<td>T-17</td>
<td>0.5×10^7 (2)</td>
<td>4.1</td>
<td>503</td>
<td>Many</td>
</tr>
</tbody>
</table>

(1) Low-speed roller (2) Spalls occurred. (3) Troubles occurred.
4.5 材種と面圧力との関連 図2と図3で示した円筒試験片の機械的性質（硬さ）並びに図5で示した円筒試験片の面圧力の研究結果から、Cr-Mo鋼浸炭研削試験片の容面圧力がCr-Mo鋼浸炭研削試験片に比べて高なのであるためには、Cr-Mo鋼浸炭研削試験片の面圧力による運転前（加工後）の硬さの低下量がCr-Mo鋼浸炭研削試験片に比べて少ないことが十分考えられる。したがって、運転前（加工後）の硬さが同一であっても高荷重条件下で硬さの低下量の少ない材種が面圧力（ここではスプール寿命）に優れていることが具体的にわたった。

5. まとめ

高荷重用浸炭焼入れ歯車の材料開発を目的に、JIS化学成分の炭素合金鋼に比べ合金元素のスリリコンを増量したCr-Mo-Si鋼浸炭研削試験片とJIS化学成分のCr-Mo鋼浸炭研削試験片を用い、様々な熟処理における機械的性質について恒温槽を用いた加熱温度実験を調べるとともに、転がり滑り接触による面圧力相当温度の変化に影響を及ぼすと推定されるため、面圧力試験機を用いた転がり滑り実験を考察・検討した。その結果、Cr-Mo-Si鋼浸炭研削試験片は、Cr-Mo鋼浸炭研削試験片に比べて、
(1) 表面付近の硬さの低下量は、焼処理工程の焼入れ温度以上の熱処理温度で少なくない
(2) 転がり滑り条件下で生じることのある大きいビットおよびスプールは、低荷重領域から高荷重領域に至るまででなくなくなり
(3) 転がり滑り条件の顕著面圧力（転がり数100万度においてスプールの生じない最大接触応力）は、向上することがあ
がかった。

したがって、Cr-Mo-Si鋼において、浸炭焼入れ焼入れ試験後後に受けた熱処理による硬さの変化の特徴が把握でき、このことと負荷とその繰返しとともに接触表面の破壊状況等との関連が明確になり、面圧力に優れた浸炭焼入れ歯車の材料開発に対して一つの指針を得た。

終わりに、株式会社住友金属小倉と新日本石油株式会社並びに宮崎大学分析センター・工学部機械システム工学科の各々のご援助・ご協力に対し感謝の意を表する。

文献

(1) たとえば、松本将、日本機械学会九州支部・部門講演会教材歯車製造技術の基礎と応用、(1990–11)、1–12、日本機械学会九州支部。　
(2) たとえば、吉田誠、日本機械学会講演会教材最新の製造技術に必要な歯車技術の基礎から応用まで－応用編－、98–98.(1990–11)、9–21、日本機械学会。
(4) たとえば、中西敏一、竹内隆・高崎、日本機械学会講演論文集 (第2回機械設計部門講演会講演論文集), 02–12, (2002–4), 27–32。
(5) 日本規格協会編、JIS RJ2802鋼鉄、1259–1260, 日本規格協会。
(6) たとえば、渡部洋・市川理・古沢浩一、若い技術者のための機械・材料設計書、〈1993–10〉、158–164、丸善株式会社。
(7) たとえば、中西敏一、有満泰常・上野拓、機械の研究、35–10, (1983–10), 1151–1156。
(8) 日本工業規格、表面粗さの定義及び表示 JIS B6001–1982, (1982–8), 1–20, 日本規格協会。
(10) たとえば、日本機械学会、技術資料歯車強さ設計資料、(1979–12), 115–149, 日本機械学会。
(11) たとえば、日本機械学会、機械工学便覧 第21編 14機械要|素設計・トライボロジー、(1994–11), 30–31, 日本機械学会。

Fig.4 Appearance of contact surface after running (in low-speed rollers)

Fig.5 Relation between cycles run and max. Hertzian stress (in low-speed rollers)