年次大会講演論文集
Online ISSN : 2433-1325
セッションID: 2216
会議情報
2216 DFP法を用いたニューラルネットワークによる圧電複合円板の変位制御 : 学習の安定化について(S14-3 材料の傾斜機能性と圧電特性への取り組み,S14 先進材料の材料特性における弾性数理解析の新たな取り組み)
坪倉 高広坂田 誠一郎芦田 文博
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper discusses an effect of stabilization of learning process for DFP-based hierarchical neural network on a result of approximate optimization for controlling deformation of a piezoelectric composite disk. Though the DFP formula enables to enhance a learning speed of the neural network, a learning result of the DFP-based neural network is heavily dependent on a set of initial value for weighing coefficients. This will cause a fatal problem in the use of approximate optimization. The proposed stabilization algorithm is applied to the neural network-based approximate optimization technique. From the numerical result, it is shown that the proposed stabilization algorithm improves accuracy of an approximated optimum result using the DFP-based neural network.
著者関連情報
© 2007 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top