2 個の平行な円板状あるいは円環状き裂を有する
傾斜機能圧電厚板の電気弾性応答

上田 整*1，五百川 達**2，西村 直樹*2

Two Parallel Penny-Shaped or Annular Cracks in a Functionally Graded Piezoelectric Strip under Electric Loading

Sei UEDA*3, Tohru I OGAWA and Naoki NISHIMURA

*3 Department of Mechanical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka-shi, Osaka, 535-8585, JAPAN

In this paper, the mixed-mode fracture problem of two penny-shaped or annular cracks in a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under electric loading. The crack faces are supposed to be insulated electrically. The problem is formulated in terms of a system of singular integral equations, which are solved numerically. Numerical calculations are carried out, and the stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity. It can be found that the normalized intensity factors are under the great influence of the geometric parameters and the effect of the material nonhomogeneity on the intensity factors depends on the geometric parameters.

Key Words : Stress Intensity Factor, Electric Displacement Intensity Factor, Elasticity, Fracture Mechanics, Functionally Graded Piezoelectric Materials, Integral Transform, Annular Crack, Penny-Shaped Crack, Electric Loading

ここで、\(c_0(z)\) は弹性定数、\(e_0(z)\) は電圧定数、\(e_0(z)\) は電導定数である。また、\(\beta\) は材料の不働エネルギーを示す正または負の定数であり、下記の \(\sigma = 0\) における材料特性を示す。

変位ベクトルの成分を \(u_w = u_w(r, z)\)、静電ポテンシャルを \(\phi = \phi(r, z)\) とすると、応力テンソルの成分 \(\sigma_{ij} = \sigma_{ij}(r, z)\) および密度電流ベクトルの成分 \(D_w = D_w(r, z)(\eta = r, \theta, z, i = 0, 1, 2)\) は、次のように与えられる。

\[
\sigma_{ij} = \frac{\partial u_i}{\partial r} + \frac{\partial u_j}{\partial r} + \frac{e_j}{e_0}(\frac{\partial \phi}{\partial r} + \frac{\partial \phi}{\partial r})
\]

\[
D_w = \frac{\partial u_w}{\partial r} + \frac{\partial u_w}{\partial r} - \frac{e_0}{e_0}(\frac{\partial \phi}{\partial r} - \frac{\partial \phi}{\partial r})
\]

ここで、

\[
(\theta_{1i}, \theta_{2i}) = \begin{cases} (\theta_1, \theta_2) & (i = 1) \\ (-\theta_1, -\theta_2) & (i = 2) \end{cases}
\]

3. 解 析

式 (3) ～ (5) に Hankel 変換法を適用することにより、変位および静電ポテンシャルに関する一般解が求まる。また、応力・電導密度成分は、変位場および静電ポテンシャルを式 (2) に代入することにより求まる。

境界条件式 (9) を考慮し、混合微積分条件 (6) ～ (8) の第 1 式を用いると、未知数 \(G_{31}(k)(k = 1, 2, m = 1, 2, 3)\) に関する次の連立方程式が得られる。

\[
\int_0^\theta \frac{[Z_{11}(\omega_{11}^{(m)} M_{11}^{(m)} + M_{11}^{(m)}) G_{11}(l) + M_{11}^{(m)} G_{11}(l)] dt + \sum_{k=1}^{m-1} \int_0^\theta \frac{M_{11}^{(m)} G_{11}(l) dt = 0}{\exp(-\beta h_0) D_0 (m = 3)}
\]

\[
\int_0^\theta \frac{M_{21}^{(m)} G_{21}(l) dt + \sum_{k=1}^{m} \int_0^\theta \frac{M_{21}^{(m)} G_{21}(l) dt = 0}{M_{21}^{(m)} G_{21}(l) dt = 0}
\]

\[
\int_0^\theta \frac{[Z_{21}(\omega_{21}^{(m)} M_{21}^{(m)} + M_{21}^{(m)}) G_{21}(l) + M_{21}^{(m)} G_{21}(l)] dt + \sum_{k=1}^{m-1} \int_0^\theta \frac{M_{21}^{(m)} G_{21}(l) dt = 0}{\exp(-\beta h_0) D_0 (m = 3)}
\]

\[
\int_0^\theta \frac{M_{31}^{(m)} G_{31}(l) dt + \sum_{k=1}^{m} \int_0^\theta \frac{M_{31}^{(m)} G_{31}(l) dt = 0}{M_{31}^{(m)} G_{31}(l) dt = 0}
\]

\[
\int_0^\theta \frac{[Z_{31}(\omega_{31}^{(m)} M_{31}^{(m)} + M_{31}^{(m)}) G_{31}(l) + M_{31}^{(m)} G_{31}(l)] dt + \sum_{k=1}^{m-1} \int_0^\theta \frac{M_{31}^{(m)} G_{31}(l) dt = 0}{\exp(-\beta h_0) D_0 (m = 3)}
\]

\[
\int_0^\theta \frac{M_{12}^{(m)} G_{12}(l) dt + \sum_{k=1}^{m} \int_0^\theta \frac{M_{12}^{(m)} G_{12}(l) dt = 0}{M_{12}^{(m)} G_{12}(l) dt = 0}
\]

\[
\int_0^\theta \frac{[Z_{12}(\omega_{12}^{(m)} M_{12}^{(m)} + M_{12}^{(m)}) G_{12}(l) + M_{12}^{(m)} G_{12}(l)] dt + \sum_{k=1}^{m-1} \int_0^\theta \frac{M_{12}^{(m)} G_{12}(l) dt = 0}{\exp(-\beta h_0) D_0 (m = 3)}
\]

\[
\int_0^\theta \frac{M_{22}^{(m)} G_{22}(l) dt + \sum_{k=1}^{m} \int_0^\theta \frac{M_{22}^{(m)} G_{22}(l) dt = 0}{M_{22}^{(m)} G_{22}(l) dt = 0}
\]

\[
\int_0^\theta \frac{[Z_{22}(\omega_{22}^{(m)} M_{22}^{(m)} + M_{22}^{(m)}) G_{22}(l) + M_{22}^{(m)} G_{22}(l)] dt + \sum_{k=1}^{m-1} \int_0^\theta \frac{M_{22}^{(m)} G_{22}(l) dt = 0}{\exp(-\beta h_0) D_0 (m = 3)}
\]

\[
(\alpha_1 < r < \beta_1)
\]

\[
(\alpha_2 < r < \beta_2)
\]
ここで，$M_{g}^{(0)}=M_{g}^{(0)}(r,r)，M_{g}^{(1)}=M_{g}^{(1)}(r,r)、$ および $Z_{
u}^{(m)}(i,n=1,2,k,m=1,2,3)$ はそれぞれ既知の積分値。既知定数である。また，混合境界条件と式(6)～(8)の第2式より，次の補足の条件式を得られる。

$$
\int_{a_{1}}^{b_{1}} t M_{a}^{(0)} G_{a}(t) dt + \frac{1}{2} \sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} t M_{a}^{(1)} G_{a}(t) dt = 0 \quad (a_{k} < r < b_{k}) \quad (14)
$$

式(11)～(14)および補足の条件式(15)を Gauss-Jacobi の数値積分式(16)を用いて数値計算するために，解の特異性を考慮し，$G_{m}^{(0)}(t)$ を用いて次のように置く。

$$
G_{m}^{(0)}(t) = \begin{cases}
\frac{c_{m}}{(t-a_{m}b_{m}^{-1})^{m+1}}(a_{m} > 0) \\
\frac{b_{m}-t}{b_{m}}(a_{m} = 0)
\end{cases} \quad (k=1,2,m=1,2,3) \quad (16)
$$

さらに，き裂先端$a_{1},b_{1}(i=1,2)$ での特異挙動を評価すると(17)，応力拡大係数K_{14i}，K_{16i}，K_{15i}，K_{25i}および電気流密度拡大係数K_{15i}，K_{25i}が次のように定まる。

$$
K_{14i} = \begin{cases}
\exp((-1)^{i+1} \beta_{h} \sigma_{\nu}^{(i)}(x_{c})^{2}\left[Z_{111}^{0} \Phi_{0}(a)\right]) (a_{j} > 0) \\
0 \quad (a_{j} = 0)
\end{cases} \quad (i=1,2) \quad (17)
$$

$$
K_{15i} = \begin{cases}
\exp((-1)^{i+1} \beta_{h} \sigma_{\nu}^{(i)}(x_{c})^{2}\left[Z_{111}^{0} \Phi_{0}(a)\right]) (a_{j} > 0) \\
0 \quad (a_{j} = 0)
\end{cases} \quad (i=1,2) \quad (18)
$$

$$
K_{16i} = \begin{cases}
\exp((-1)^{i+1} \beta_{h} \sigma_{\nu}^{(i)}(x_{c})^{2}\left[Z_{111}^{0} \Phi_{0}(a)\right]) (a_{j} > 0) \\
0 \quad (a_{j} = 0)
\end{cases} \quad (i=1,2) \quad (19)
$$

$$
K_{25i} = \begin{cases}
\exp((-1)^{i+1} \beta_{h} \sigma_{\nu}^{(i)}(x_{c})^{2}\left[Z_{111}^{0} \Phi_{0}(a)\right]) (a_{j} > 0) \\
0 \quad (a_{j} = 0)
\end{cases} \quad (i=1,2) \quad (20)
$$

$$
K_{25i} = \begin{cases}
\exp((-1)^{i+1} \beta_{h} \sigma_{\nu}^{(i)}(x_{c})^{2}\left[Z_{111}^{0} \Phi_{0}(a)\right]) (a_{j} > 0) \\
0 \quad (a_{j} = 0)
\end{cases} \quad (i=1,2) \quad (21)
$$

4. 数値結果

数値計算を行い，標準化された応力・電気流密拡大係数に及ぼす下側き裂先端の位置$(a_{1},b_{1})/h$および材料不均質パラメータhの影響を解明する。

図2は計算結果の一部であり，$a_{1}/h=0.5, b_{1}/h=1.5, b_{1}/h=1.5$とした場合の標準化された応力拡大係数$(K_{14i},K_{15i},K_{16i},K_{25i})/\sigma_{\nu}^{(i)}(x_{c})^{2}$および電気流密度拡大係数$(K_{24i},K_{25i})/D_{4}(x_{c})^{2}$に及ぼす$a_{1}/h$の影響を$h$パラメータとして示したグラフである。ここに，実線は$h=1.0$，一点鋼線は$h=0.0$，点線は$h=1.0$とし，点線は$h=1.0$とした結果を示す。

\[\text{Fig.2: The effect of } a_{1}/h \text{ on the stress and electric displacement intensity factors of two annular cracks.}\]

参考文献省略