ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-D21
会議情報
1A1-D21 Unscented Kalman Filterにおける識別訓練法を用いたパラメータ学習
坂井 敦黒田 洋司
著者情報
会議録・要旨集 フリー

詳細
抄録
In this paper, we propose an automatically learning technique to solve tweaking parameter problems of Unscented Kalman Filter (UKF) for accurate localization. The parameters consist of three kinds of parameters: I) Covariance matrix of input noise. II) Covariance matrix of measurement noise. III) Hyper-parameter of UKF. For the parameter learning. one of discriminative training methods is adopted to obtain the optimal parameters automatically. Simulation and experimental results in an outdoor environment are presented. We demonstrate the effectiveness of our proposed learning method for localization.
著者関連情報
© 2010 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top