零位相差ノッチフィルタとモデル予測制御を用いた
天井クレーンの遠隔操縦システムに関する研究∗

Study on Crane Tele-operation System Using Zero Phase Notch Filter
And Model Predictive Control

○ 学 高木智之 (岐阜高専) 正 森 貴彦 (岐阜高専)

Tomoyuki TAKAGI, Gifu National College of Tech.
Takahiko MORI, Gifu National College of Tech., mori@gifu-nct.ac.jp

In this paper we design a new crane tele-operation system considering power assisted
conveyance using zero phase notch filter and model predictive control. The zero phase notch filter
enables to modify frequency characteristics of operating torque without signal distortion on the
line in order to suppress vibration of the load-ropae of crane. The model predictive control enables
to suppress the vibration in comparison with conventional system sufficiently. Some results of
simulation and experiment are given in order to verify the usefulness of our proposed system.

Key Words: overhead crane, tele-operation, zero phase notch filter, vibration control, model predictive
control

1. 緒 言

筆者は先に、天井クレーンの遠隔操縦システムにお
いて、非定型な目標値に対する応答、振動防止の抑制、
残留振動の抑制、およびオペレータの直感的な操作を
实现するため、ノッチフィルタ切替法による位置決め
支援支援法(1)を提案した。ノッチフィルタ切替法は、オ
ペレータによる操作の過程で、ノッチフィルタを用い
た位置決め支援支援法から単純なパワーアシストによ
る支援法へおよびモード間数を用いて連続的に切り替え
ることで、各支援法の優れた特性を組み合わせること
ができる支援法である。操作初期では適度に操作が重
いため初期加速速度を与えにくく、途中から操作が軽く
感じる。しかし、ノッチフィルタ切替法は、1つのタ
スクに対して複数の補償器を切り替える場合に効果的
であるが、切替を始めるための閾値や切替にかかる時
間を試行錯誤的に調整する必要があるため、設計が効率
的でなく、複雑なタスクに対するノッチフィルタ切替法
をそのまま適用することが困難になると思われる。
設計の効率向上には、位置差の少ないノッチフィルタ
の設計が不可欠である。また、吊り荷物の最大揺
れ角とタスク達成時間の間にトレードオフが存在する
ため、作業性を確保しながら安全性をさらに向上させ
ることが困難であった。このトレードオフの問題に対
して、現時刻から予測ステップ先の時刻までの制御量
と制御人力を評価の指標とする最適制御問題をリアル
タイムに解けるモデル予測制御を用いた制御系への進
展が最も有効な方策の一つとして考えられる。
そこで本研究では、上記課題を解決するため、マス
タ側の補償器として熊谷らが提案した零位相差ノッチ
フィルタ(2)(3)を、スレープ側の補償器としてモデル予
測制御(3)をそれぞれ本システム(1)に適用し、新たな位
置決め支援支援法を提案する。本提案支援法により、
マスタ側のノッチフィルタの切替を伴わず、さらに作
業性と安全性のトレードオフの改善が期待できる。
ところでは、零位相差ノッチフィルタは、完全直線位
相特性を有するFIRディジタルフィルタの基調理論(4)
に基づいて設計されたもので、全周波数帯域において
位相差を合わせ、波形歪みを受けない特徴をもつ。熊
谷らは、予め求められた指令値に含まれている共振
成分をオフライン処理で除去する指令値フィルタリン
グ方式によって、産業用ロボットの高速・高精度位置
決め制御および制动摇抑制を実現している。一方、筆者
は、ノッチフィルタ切替法による位置決め支援支援法
(1)と同様に、指令値であるオペレータの操作トルクを
オンライン処理で周波数帯域することによって、非定
型な目標値に対する応答、振動防止の抑制、およびオ
ペレータの直感的な操作を実現する。その結果、これ

1A1-U10(1)

NII-Electronic Library Service
までの操作支援法よりも設計効率の向上が期待でき、提案支援法の有用性を高めることができる。

また、モデル予測制御は、モデル予測制御（Model Predictive Control, MPC）は、現時点から予測ステップ（予測ホライズン）先までの時刻までの評価区間における最適制御問題をリアルタイムに解いて得られる最適制御入力を用いる制御手法である。近年のコンピュータの処理速度が非常に高速化されたため、モデル予測制御をサーボ機構のような帯域幅の高いものへの応用が期待できるようになり、最近ではロボット制御などの分野にも適用例がある(10)。本研究においても、コンピュータの高速処理能力を活かして、数[msec]〜数十[msec]オーダーの早い応答が要求されるクレーンの操作支援に、Maciejowskiが提案する上記手法を網羅したモデル予測制御(6)を適用する。具体的には離散化したモデルモデルに基づいた補償器を用いてサーボ系を設計する。その結果、これまでの従来法よりも制御性能の向上が期待でき、本システムに対する操作支援法として有用性を高めることができる。

2. 零位相ずれフィルタによるマスタ支援

零位相ずれフィルタ(2)(3)に基づき、マスタ側のノッチフィルタの切替えを伴わない新たな位置決め操作支援法として、零位相ずれフィルタを用いた支援法（以降、PA-ZPNF: Power Assist with Zero Phase Notch Filter）を提案する操作支援法として考える。なお、図1に零位相ずれフィルタを加えたマスタ環境の制御系のブロック図を示し、提案支援法の速度指令電圧v_{st}(t)を次式で表す。

\[v_{st}(t) = G_{ZPNF}(z)s_{st}(t). \] (1)

ここで。

\[G_{ZPNF}(z) = G_{ZPLPF1}(z) + G_{ZPLPF2}(z). \] (2)

\[= \chi_{0} z^{-\eta} + \cdots + \chi_{0} z^{-1} + \cdots + \chi_{0} z^{-\eta}, \] (3)

\[\simeq \chi_{0} + 2(\chi_{1} z^{-1} + \cdots + \chi_{1} z^{-\eta}), \] (4)

\[G_{ZPLPF2}(z) = 1 - G_{ZPLPF1}(z). \] (5)

\[G_{ZPLPF1}(z) = \left(\phi_{0} z^{h} + \cdots + \phi_{1} z + \phi_{0} z^{-1} + \cdots + \phi_{0} z^{-h} \right)^{m}, \] (6)

\[\phi_{i} = \phi_{i} + 2(\phi_{0} + \phi_{1} + \cdots + \phi_{i})^{-}, \quad (l = 0, 1, \ldots, h), \] (7)

\[\phi_{i} = \sum_{i=0}^{h} \phi_{i}^{k} \chi_{l}^{k}, \quad (l = 0, 1, \ldots, h), \] (8)

\[G_{ZPLPF2}(z) = (\psi_{0} z^{h} + \cdots + \psi_{1} z + \psi_{0} z^{-1} + \cdots + \psi_{0} z^{-h})^{m}. \] (9)

\[\psi_{i} = \psi_{i} + 2(\psi_{0} + \psi_{1} + \cdots + \psi_{i})^{-}, \quad (l = 0, 1, \ldots, h), \] (10)

\[\psi_{i} = \sum_{i=0}^{h} \psi_{i}^{k} \chi_{l}^{k}, \quad (l = 0, 1, \ldots, h) \] (11)

である。ただし、\(\phi_{0}^{k} \psi_{0}^{k} \)（\(l = 0, 1, \ldots, h \)）は、各々一次ローバスフィルタ \(\eta_{0}/(s + \eta_{0}) \), \(\eta_{0}/(s + \eta_{0}) \)のインパルス応答の各サンプリング値である。また、\(h \)はインパルス応答のサンプル数、\(m \)は零位相ずれフィルタのゲイン特性を調整するパラメータ、\(\eta = h \times m \)はその数である。

零位相ずれフィルタ \(G_{ZPNF}(z) \) は、第1の零位相ずれローバスフィルタ \(G_{ZPLPF1}(z) \) と、第2の零位相ずれローバスフィルタ \(G_{ZPLPF2}(z) \) の(6)式から得られる零位相ずれローバスフィルタ \(G_{ZPLPF1}(z) \) と第(2)式をとることにより実現できる(2)(3)の、

しかし、零位相ずれフィルタは伝達関数の和や形で得られるため、所望のゲイン特性を厳密に達成することは極めて困難である。また、零位相ずれフィルタの設計の最適化手法もまた、設計パラメータの調整を試行錯誤によって行う必要がある。さらに、(3)式をもとにして、零位相ずれフィルタの出力は過去、現在、未来の値を必要とする。ここで、\(\omega = e^{\jmath \omega} \)を代入すると、(3)式は以下のようになり、実数成分は零となり、実数成分のみで表されることになる。

\[G_{ZNF}(e^{\jmath \omega}) = \chi_{0} e^{\jmath \omega} + \cdots + \chi_{1} e^{\jmath \omega} + \cdots \] (12)

\[= \chi_{0} + 2(\chi_{1} e^{\jmath \omega} + \cdots + \chi_{1} e^{\jmath \omega}) \] (13)

\[= \chi_{0} + 2(\chi_{1} e^{\jmath \omega} + \cdots + \chi_{1} e^{\jmath \omega}) \] (14)

さて、未来の値は不定であるため、(14)式の零位相ずれフィルタを厳密に設計することはできない。さらに、(3)式または(12)式の右辺第1項 ~ 第7項が存在すると、そのままで伝達関数がプローブとならず実現が不可能となる。そこで、未来の値を利用して過去と現在の値からなる近似的な零位相ずれフィルタの実現を図る。ここでは、設計の簡便さから、\(e^{\jmath \omega} \) = 1を(12)式 \((l = 1, 2, \ldots, 7) \)と仮定すると、(13)式は(15)式のように未来の値を必要としなくなる。最後に、(15)式をZ変換表現に戻すと、(4)式を得る。

\[G_{ZNF}(e^{\jmath \omega}) = \chi_{0} + 2(\chi_{1} e^{\jmath \omega} + \cdots + \chi_{1} e^{\jmath \omega}) \] (15)

なお、(12)式が厳密に成り立つためには、未来的値を常に零と仮定すればよい。ただし、このとき零位相差は実現できるが、減衰特性が劣化する現象が見られる。
3. モデル予測制御を用いたスレーブ支援

3-1 提案支援システムの構成 図2に本研究で提案するモデル予測制御を用いたスレーブ支援システムを示す。本提案支援システムは、マスタ側で生成された現在の位置指令信号から未来の制御入力の最適値を予測するための、制御対象（天井フレーム）のモデル \(P(z) \in R^n \) に基づくモデル予測制御系で構成される。各図のパラメータの説明は以下の通りである。

まず、図2の各信号名について説明する。 \(s_p(k) \in R^{p \times 1} \) は制御入力（台車位置、吊り荷ロープの揺れ角、台車速度）の目標値、 \(m_p \) は制御量の数、 \(\varepsilon_p(k) \in R^{m_p \times 1} \) は現在の誤差、 \(\Delta s_p(k) \in R^{p \times 1} \) は未来の設定値軌道、 \(P_p \) は予測ホライズンのステップ数、 \(E_p(k) \in R^{p \times m_p \times 1} \) は未来の誤差、 \(R_p(k) \in R^{p \times m_p \times 1} \) は未来的参照軌道、 \(E_p^{FREE} \in R^{p \times m_p \times 1} \) は未設定値軌道とシステムの自由応答の間の追従精度、 \(\Delta u_p(k) \in R \) は1ステップ未来看を変化、 \(u_p(k) \in R \) は \(\Delta u_p(k) \) から離散積分した離散制御入力である。

つきに、図2の各ブロック名について説明する。 \(I_p \in R^{p \times m_p \times 1} \) は未来の設定値軌道を生成するすべての要素が1の配列、 \(A_p = [\text{diag} \{e^{(d(k)x_p)} \}, e^{(d(k)x_p)}, e^{(d(k)x_p)}] \) は結合の誤差、 \(A_p^{FREE} \in R^{p \times m_p \times 1} = \) 未来のステップ数未来の制御入力の変化を与える制御入力予測コントローラのフィードバックゲイン、 \(I_p \in R^{p \times m_p \times 1} \) は未設定値軌道の生成配列、 \(\varepsilon_p(k) \in R^{p \times m_p \times 1} \) は制御入力のスレーブのすべての変化を含む未来の変化、 \(\Delta u_p(k) \in R \) は現在の状態量から制御量を取り出しの関数、 \(\hat{P}(z) \in R^n \) は現在の状態量 \(\hat{x}_p(k) \) の一部を推定する最大次元オブザーバである。

3-2 離散系モデルに基づく予測モデル まず、制御対象の連続系空間状態モデル \(P(z) \) を、

\[
P(z) : \begin{cases}
\hat{x}_p(t) = A_p x_p(t) + B_p u_p(t) \\
y_p(t) = C_p x_p(t)
\end{cases}
\]

と表す。ただし、 \(x_p(t) = [x_c(t), \theta(t), \psi(t), \dot{\theta}]^T \in R^{n_p \times 1} \), \(u_p(t) = \psi_p^d(t) \in R \), \(y_p(t) = [x_c(t), \theta(t), \psi(t), \dot{\theta}]^T \in R^{n_p \times 1} \)

は、おのの状態量、制御入力、観測出力である。また、各係数行列は、

\[
A_p = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\zeta_c & 0 \\
0 & -g/L & -\zeta_c/L & 0
\end{bmatrix}, \quad B_p = \begin{bmatrix}
0 \\
0 \\
\zeta_c \\
\zeta_c/L
\end{bmatrix},
\]

\[
C_p = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

として記述する。ここで、 \(\zeta_c \) は台車の減衰係数と電圧-速度変換係数、 \(g \) は重力加速度、 \(L \) は吊り荷ロープ長である。この連続系状態空間モデル \(P(z) \) に対し、サンプル時間 \(dt \) の0次ホールドで離散化すると、以下に示すような、図2で構成するモデル予測制御のための離散系状態空間モデル \(P(z) \) を得る。

\[
P(z) : \begin{bmatrix}
x_p(k+1) = \begin{bmatrix}
A_p^1 & B_p^1 \\
A_p^2 & B_p^2 \\
\vdots & \vdots \\
A_p^p & B_p^p
\end{bmatrix} x_p(k) \\
x_p(k+1) = \begin{bmatrix}
(A_p^1)^2 & M_p \end{bmatrix} x_p(k) \\
+ \sum_{i=0}^{M_p-1} (A_p^1)^i B_p^1 u_p(k-1)
\end{bmatrix}
\]

として、 \(\Delta u_p(k) \) は階段状制御入力の変化を表す。

\[
\begin{bmatrix}
\Delta u_p(k) \\
\vdots \\
\Delta u_p(k + M_p - 1)
\end{bmatrix}
= \Psi p x_p(k) + \Gamma p u_p(k - 1) + \Theta \Delta u_p(k).
\]

ただし、\(\Delta u_p(k + i - 1) = u_p(k + i - 1) - u_p(k + i - 2)\), \(i = 1, \ldots, M_p\) は \(i\) ステップ先の制御入力の変化分である。このとき、次節で用いる設定值軌道に追従させたい制御量をつぎのように定義する。

\[
Z_p(k) = \begin{bmatrix}
c p & 0 & \cdots & 0 \\
0 & c p & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & c p
\end{bmatrix}
\begin{bmatrix}
x_p(k + 1) \\
\vdots \\
x_p(k + P_p)
\end{bmatrix}
\]

\[
= C_p \begin{bmatrix}
x_p(k + 1) \\
\vdots \\
x_p(k + P_p)
\end{bmatrix}
\]

\[
= C_p (\Psi p x_p(k) + \Gamma p u_p(k - 1) + \Theta \Delta u_p(k))
\]

\[
= \Psi p x_p(k) + \Gamma p u_p(k - 1) + \Theta \Delta u_p(k).
\]

\subsection*{3.3 制約なし予測制御問題の定式化}

図2において、以下の制約なしモデル予測制御の最適化問題

\[
\text{Minimize } V_p(k)
\]

\[
= ||Z_p(k) - R_p(k)||^2_{Q_p} + ||\Delta u_p(k)||^2_{R_p}
\]

\[
= \left[\begin{bmatrix}
S Q_p (Z_p(k) - R_p(k)) \\
S R_p \Delta u_p(k)
\end{bmatrix} \right]^2
\]

を解くことで、(19)式内の\(\Delta u_p(k)\)の最適値を与えるフィードバックゲイン行列\(K_{\text{MPC}}\)を求める。ただし、

\[
S^T Q_p S_{R_p} = Q_p, \quad S^T R_p S_{R_p} = R_p.
\]

まず、未来の制御入力の全変化を0とした場合のそれぞれの、未来の設定値軌道とシステムの自由変位の間の追従誤差が\(E^\text{FREE}_p(k)\)を次のように定義する。

\[
E^\text{FREE}_p(k) = R_p(k) - Z_p(k) \Delta u_p(k) = 0
\]

\[
= R_p(k) - \Psi p x_p(k) - \Gamma p u_p(k - 1).
\]

\[
V_p(k) = \left[\begin{bmatrix}
S Q_p (\Theta \Delta u_p(k) - E^\text{FREE}_p(k)) \\
S R_p \Delta u_p(k)
\end{bmatrix} \right]^2
\]

に変換する。

したがって、上記の評価関数を最小とする未来の制御入力の全変化分の最適値は、つぎの等式

\[
\begin{bmatrix}
S Q_p \Theta_p \\
S R_p \theta
\end{bmatrix} \Delta u_p(k) = \begin{bmatrix}
S Q_p \\
S R_p \theta
\end{bmatrix} E^\text{FREE}_p(k)
\]

を満足する最小二乗解

\[
\Delta u_p(k) = \begin{bmatrix}
S Q_p \Theta_p \\
S R_p \theta
\end{bmatrix} \begin{bmatrix}
S Q_p \\
S R_p \theta
\end{bmatrix} E^\text{FREE}_p(k)
\]

\[
= K_p \Delta u_p(k)
\]

\[
= \begin{bmatrix}
\Delta u_p(k) \\
\vdots \\
\Delta u_p(k + M_p - 1)
\end{bmatrix}
\]

である。なお、\(\Delta u_p(k)\)は行列の左除算を意味する。

よって、フィードバックゲイン行列\(K_{\text{MPC}}\)は、(30)式と(31)式より、

\[
K_{\text{MPC}} = \begin{bmatrix}
1 & O_{1 \times (M_p-1)}
\end{bmatrix} K_p
\]

のように求められる。

\section*{4. お わ り に}

本研究では、天井クレーンの遠隔操縦システムの設計の効率向上と作用性と安全性のトレードオフ改善を目的に、マスタ補償器に零位相遅れ補償フィルタを、スレーブ補償器にモデル予測制御をそれぞれ適用した新たな位置決め支援システムを提案した。シミュレーション結果および実験結果については当面発表する。

\section*{文 献}

(3) 熊谷氏, 吉岡崇, 嵐田直樹, “産業用ロボットのモーション制御における零位相遅れノッチフィルタの設計法”, 電気学会研究会資料, IIC 2010, pp.7-12 (2010)

(4) 田尾氏, “ディジタルフィルタ設計入門”, CQ出版, pp.91-184 (1990)

