ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-A09
会議情報

深層学習を用いたきゅうり認識のためのデータセットの自動生成
*中野 中央増沢 広朗三浦 純
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper describes a method of dataset generation to realize cucumber recognition for harvesting robots by deep learning. To recognize cucumber fruits, conventional image processing methods are not very effective because cucumber fruits, leaves, and stems have same color, while deep learning is useful because it can automatically learn features to recognize them. Deep learning, however, requires a large amount of data for training, and there are no datasets for the cucumber greenhouse. Manual annotation consumes time and cost. Therefore, we developed a method to generate a large dataset automatically using computer graphics. We generated a dataset by creating and rendering 3D models of cucumber plants with their actual parameters measured in the greenhouse. Using this method, we made a cucumber dataset for semantic segmentation, object detection, and instance segmentation.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top