ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-I04
会議情報

ROSを用いた移動ロボットの強化学習システム開発
*室井 基継佐々木 史紘山科 良太
著者情報
会議録・要旨集 認証あり

詳細
抄録

We propose a ROS (Robot Operating System) based reinforcement learning system for mobile robots. Previous ROS based reinforcement learning systems have a problem that a mobile robot state does not change by the mobile robot action. For example, if the mobile robot state is an image, learning the mobile robot action is difficult because the image does not change though the mobile robot action changes. To address the problem, the proposed system returns a reward and a next state when a mobile robot action, for example linear and angular velocity, is done by observing the wheel odometry of the mobile robot. We evaluate the proposed system in the simple visual navigation task that is implemented in ROS and Gazebo. Experiment results show that the proposed system works well and improves sample efficiency.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top