軟弱地盤上における低圧車輪の走行性能評価

Mobility Evaluation of Low-Pressure Wheel on Deformable Terrain

○ 成田伸一郎, 大概真嗣, 若林幸子, 西田信一郎
(JAXA/月・惑星探査プログラムグループ)

Shin-ichiro NARITA, Masatsugu OTSUKI, Sachiko WAKABAYASHI, Shin-ichiro NISHIDA
(JAXA/Lunar and Planetary Exploration Program Group)

Key Words: Lunar Exploration Rover, Flexible Wheel, Contact Pressure Measurement

Abstract: JAXA is developing a mobile rover to lunar surface exploration or base construction as a follow-on KAGUYA. Because the lunar surface is covered by regolith, implying an irregular and rough terrain, the rover has difficulty in mobility. Therefore, a new low-pressure wheel is recommended for high mobility performance and low power consumption with a less complex mechanism. A low-pressure wheel can change its contact shape and pressure distribution to account for terrain. In this paper, the procedure for the measurement of mobility parameters like contact pressure on the deformable terrain, and a contact mobility model for low-pressure wheels are presented. This measurement is valuable for analyzing the interaction between a low-pressure wheel and the deformable terrain.

1. 緒言
「かぐや」に続く月探査として, 月面探査に向けた月着陸探査の検討が進められている5]。月面はレギリスと呼ばれ
る軟弱地盤で覆われていることが良く知られている。これに
加えて将来の観点で観測ミッションでは, 機械やクレーア内
等が探査対象であり, こうした場合は急勾配の傾斜面や切り
立った崖など比較的剛性の高い不整地盤を走行しなければ
ならないが, 剛性も高い。探査ローブはこうした環境下ミソ
ジョンを効率的に達成するために, 不整形状に合わせて接地
面積を拡大し, 進行方向への推進力を導く路面との摩擦力を
確保する走行系を備える必要がある2]。図 1 に月面探査ロー
ーブの想像図を示す。

月面上は高真空, 放射線, 日照・日陰時の温度差が大きい,
といった極限環境であり, 確実な走行を実現する走行機構の
検討が進められている3]。月面の不整地盤は, 車輪の実験においては,
その特性を把握することが必要であり, 車輪のモデル化や軟弱
地盤上の検討が進められている4]。低圧車輪では弾性ばねを
転中心から車輪の重心位置に配置した弾性車輪の
原理の試作車輪において検討がある5]。この車輪は転動時の
回転トルク伝達特性が低いことから, 重心位置における劣化
軟弱地盤上では接地部の影響を小さくし, 路面状態により非線
形な変形特性を有することが考えられる。また, 微小重力
環境を考慮した接地部の計測や, その特性を試験・評価
する必要がある。

著者等は月探査ローブの低圧車輪における性能評価を行
うことの目的として, 低圧車輪の特性計測技術の開発とモ
デル化手法の確立を行っている。低圧車輪の例として, これ
までに原理的試作車輪の回転トルク伝達特性を改善するよ
うに, 車輪中央に剛体ホイールを置き, これから半径方向に
弾性ばねを配置した弾性車輪に対して, 剛性地盤上に圧力セン
サを設置した車輪転動時の接地面圧力分布を計測6]と走
行負荷評価7]を行っている。またモデル化では動力学解析ツ
ール用いて非線形特性を有する低圧車輪の走行性能評価
を行っている8]。これに続き本研究では車輪が軟弱地盤上を
走行する際の接地面圧計測装置を開発し, 弾性車輪と低圧車
輪の 2 つの車輪について実際に計測を行った。また, 軟弱地

図 1 月面探査ローブの想像図

NII-Electronic Library Service
ばねは車輪横軸方向にそれぞれ2つ固定され、車軌後ばね剛性やステアリング特性を向上させている。

2-3 接地面圧計測装置
これまでの研究では接地面圧計測のために、剛性地盤上に圧力センサを貼り付ける必要があるが、車輪はこの上を走行する基礎的試験に留めていた。そこで軟弱地盤上における接地面圧計測のために、センサを車輪表面に貼り付けることとした。次に、低圧車輪の接地面圧を計測するための増幅回路を構成し、電源、周波モジュールを車軌に搭載可能な設計として、新規に開発を行った。以下の図3に車軌に搭載可能な接地面圧計測装置のブロックダイアグラムを示す。

2-4 面圧計測装置
面圧計測装置は車軌路面上の授な車軌に円形を取り、前軌で検査を行った面圧計測装置を搭載する。面圧計測装置は車軌中心における慣性モーメントを一定とするため、車軌軸方向中心付近に設置した。図4に面圧計測装置と面圧計測車軌の外観を示す。面圧計測車軌は低圧部の走行性能評価のため、車軌径の等しい低圧車軌と剛性車軌で構成する。

センサの設置位置は面圧計測装置のAD変換IFから8点とし、低圧車軌の表面ベルトにおける板ばね直下とそれ以外の箇所直下を考慮して、車軌円周方向に2行、幅方向に4列とした。サンプリング周波数はこれまでの計測実績と同じ20Hzとした。

3. テラメカニクスに基づく走行力学
3-1 座標系
低圧車軌の車軌座標系を図5に示す。車軌の進行方向をx、車軌軸方向をy、鉛直方向をzとする。車軌の回転方向をω、車軌の進行方向の移動速度をvとする[10]。

3-2 低圧車軌の有効半径
剛性車軌が軟弱地盤上を走行する際には、車軌の半径は変動や地盤変動によって変化しない。このとき車軌の転動に伴う有効半径は一定であるが、軟弱地盤を低圧車軌が走行する場合は、車軌面からの応答で車軌が変形するため、有効半径を一定とすることが出来ない。車軌と地盤の両方が変形するため、問題は複雑になる。

車軌が平面と接する場合のスケームを以下の図6に示す。車軌は入射角θと車軌方向θの間でほぼ線形状に変形を、その他の部分では円弧状に変形する。低圧車軌が剛性車軌を走行する際は、車軌の有効半径Rは以下のよう式を表される[11]。

\[R(\theta) = \begin{cases}
 R_0 - R_1 \left(1 - \frac{1}{\cos \theta} \right) & \theta < \theta_1 \\
 R_0 - R_1 \left(1 - \frac{1}{\cos \theta} \right) e^{-\left(\frac{\theta}{\theta_1}\right)} & \theta_1 \leq \theta < \pi \\
 R_0 - R_1 \left(1 - \frac{1}{\cos \theta} \right) e^{-\left(\frac{\pi}{\theta_1}\right)} & \pi \leq \theta < 2\pi + \theta_1
\end{cases} \]

Rは車軌変形前の半径、ζ、θは車軌の剛性、減衰率、車軌形状、車軌走行速度に依存する係数であり、実験的に得られる。

3-3 低圧車軌の挙動
車軌のすべり率は入射の角度に対して車軌が走行する割合であり、車軌軸回方向速度vと車軌軸速度ωを用いて以下のよう式を定義される[12]。

\[s = \begin{cases}
 \left(\frac{v_0 - v_0}{v_0} \right) (\omega > v_0; 車軌進行時) \\
 \left(\frac{v_0 - v_0}{v_0} \right) (\omega < v_0; 車軌進行時)
\end{cases} \]

車軌の垂直応力とせん断応力を算出するためには、車軌の土壌荷重を考慮する必要がある。車軌の挙動現象は静的挙動と動的挙動に分けられる。土壌の変化に応じた応力は平面状入力

\[p(k) = \left(\frac{k_1}{b} + k_2 \right) h \]
範囲は入射角と離脱角によって定義される。入射角と離脱角を定式化する上で、「車輪の沈下は定常状態である」という前提のもとに議論を行う。

低圧車輪が軟弱地盤上を走行する際の定常状態を図6に示す。車輪の進入角を定義する上で、「車輪は転動中に前方には影響を及ぼさない」と仮定する。これにより幾何学的関係から入射角は以下のように定義することが出来る。

\[\theta_a = \cos^{-1} \left(\frac{1 - k_a r_e}{k_a r_e} \right) \] （7）

車輪離脱角は車輪半径一定となる領域を入射角との間に挟んで以下のように定式化する。

\[\theta_a = (\theta'_a - \theta_0) - 2(\theta'_a - \theta_0) + \theta_a \]

ここで \(\theta_a \) は車輪接地面内で垂直応力が最大となる角度である。

軟弱地盤上の車輪が転動すると、図9に示すように車輪の接地面における法線方向に垂直応力が生じる。以下のように設定されている。\[h = \left(k + k_\theta \right) \left(\frac{r_{in}}{r_{out}} \sin \theta - R_{in} \sin \theta \right) \] （4）

車輪幅と接地角から接地全床を考えて静的な垂直応力を算出すると以下のようになり、低圧車輪の静的垂直応力モデルを図7に示す。

\[F_y = \int_0^\theta p(\theta) b R_{out} \sin \theta d\theta \]

\[= b \int_0^\theta \left(k + k_\theta \right) \left(\frac{r_{in}}{r_{out}} \sin \theta - R_{in} \sin \theta \right)^2 R_{out} \sin \theta d\theta \]

\[= \left(k + k_\theta \right)^2 \int_0^\theta \left(\frac{r_{in}}{r_{out}} \sin \theta - R_{in} \sin \theta \right)^2 R_{out} \sin \theta d\theta \] （5）

また、車輪は転動と共に土壌を動的に破壊し動的に沈下するが、すべり率が一定の場合には動的沈下量が一定値に収束することが知られている。よって車輪と土壌のすべりによって生じる最終的な動的沈下量は以下のようによって算出することが出来る。

\[h_d = c_s s \] （6）

ここで \(c_s \) は動的沈下定数と呼ばれ、車輪の接地面における車輪接地面形状、および土壌に依存する定数である。車輪の総沈下量は静的・動的沈下量を合わせたものであり、以下のようによく表現することが出来る。

\[h_{tot} = h_s + h_d \] （7）

3-4 低圧車輪の走行時の垂直応力

車輪に発生する力は車輪と土壌において生じる応力を車輪接地面に重ねることによって計算できる。この車輪接地面に下に示すように車輪の静的垂直応力の定式化を行った。
4. 鉄道地盤上における走行実験

4-1 すべり率の算出

走行実験および解析における実験条件を表2示す。斜まず20 [deg]、車輪垂直荷重20 [N]のレギュリッシュナップの鉄道地盤上で、20 [mm/sec]の転動速度で実験を行った結果を以下の図9、10に示す。この結果から剛性、低圧の両車輪ともほとんどすべりを生じていないことが分かる。これより、過去の実験結果とも類似しており、試作車輪の半径が0.185 [m]と大きいことから、この車輪では剛性、低圧に限らずすべり率が小さいといえる。

4-2 車輪の沈下量

沈下量は第3章(4)式から求められ、沈下量は静的、動的に区分され、動きの沈下量はすべり率一定の際に一定値に収束する。

図9 剛性車輪の走行シミュレーション

図10 低圧車輪の走行シミュレーション

図11 車輪沈下量

4-3 接地面圧力の比較検討

接地面圧力の表示を示し、転車接地面の表面における圧力座標を定義する。これにより、初めから鉛直下向きに車軸をまた車軸から鉛直下向きに横軸をとり、車輪の転動角度を表示する。接地面圧力は単位面積あたりの力表し、低圧車輪では車軸が地盤への沈下を伴って変形をおこすため、これにより、庫軸への接地面からの接地面圧力を定義する。

面圧計測装置を用いて計測を行った結果と、第3章において示した低圧車輪のテーラーシミュレーションモデルをもとに理論計算を行った結果を図12に示す。接地面圧力の目安として、座標系の12点あたりは10 [kPa]の接地面圧力である。これにより、平均的、接地面圧力の最大値は10 [kPa]以下が望ましいことが報告されている[12]。剛性車輪では、低速域における計測で10 [kPa]を超えた接地面圧力があるとのものである。それ以外の計測条件では接地面圧力が10 [kPa]以下に収まる結果となっている。

理論計算は第3章(9)式に、レギュリッシュナップの代表値を代入することにより求めた。算出に用いた数値を表3に示す。低圧車輪では、入射角、出射角の角度、最大角の定義から車軸の形状が一定となる前角の角度と入射角の間で最大圧力点を持つ。また、車軸の一定となる領域に関しては、接地面圧力が増加する領域に限られる。理論計算では車軸の接地面積とその接地面圧力に関する、剛性車軸では面圧が狭く面圧は大きくならないのに対して、低圧車軸では接地面積が広く、また面圧は小さくなっていることがわかる。

また、すべりを生じていないことから車軸の転動速度が変更されても沈下量が変化せず、従って接地面圧力の変圧を用い変化しない結果となった。

計測では事前に実施した剛性車軸上の基礎計測と比較して、軟鋼地盤では接地面積が広く、接地面圧が小さくなることが分かった。また、軟鋼地盤上の計測では剛性車軸と比較しても接地面圧力の方が、接地面積が広く、接地面圧が小さくなることが分かった。これは理論計算をもとに、低圧車軸では車軸自体が変形することにより車軸の沈下を考慮して。
垂直応力を生じさせている車輪の垂直荷重を軟弱地盤が広く受け止めることと一致する。また、理論値に比べ計測値の接地面圧は大きく値となっているが、剛性、低圧とも車輪の入射角と脱角の間で最大応力角を持ち、その前後でならかな分布を示す傾向は一致している。また車輪の転動速度が大きくなると、接地面圧力分布が小さくなる結果となった。これは理論計算の結果とは必ずしも一致しないが、これまでの他計測装置を用いた実験でも確認されており、すべりを生じていない速度と接地面圧が反比例することが象徴として予想される。

5. 結言
本研究では、金属低圧走行機構における走行性能の評価を

<table>
<thead>
<tr>
<th>内容</th>
<th>計測値</th>
<th>理論値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Type</td>
<td>Rigid/Low</td>
<td>-</td>
</tr>
<tr>
<td>Velocity</td>
<td>20/50 mm/sec</td>
<td>-</td>
</tr>
<tr>
<td>Load</td>
<td>20 N</td>
<td>-</td>
</tr>
<tr>
<td>Terrain</td>
<td>Regolith</td>
<td>-</td>
</tr>
<tr>
<td>Slope Angle</td>
<td>0 deg</td>
<td>-</td>
</tr>
</tbody>
</table>

![図12 接地面圧の理論値と計測値](image_url)

<table>
<thead>
<tr>
<th>表2 走行実験および理論計算の条件</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>Wheel Type</td>
<td>Rigid/Low</td>
<td>-</td>
</tr>
<tr>
<td>Velocity</td>
<td>20/50 mm/sec</td>
<td>-</td>
</tr>
<tr>
<td>Load</td>
<td>20 N</td>
<td>-</td>
</tr>
<tr>
<td>Terrain</td>
<td>Regolith</td>
<td>-</td>
</tr>
<tr>
<td>Slope Angle</td>
<td>0 deg</td>
<td>-</td>
</tr>
</tbody>
</table>

![図12 接地面圧の理論値と計測値](image_url)

<table>
<thead>
<tr>
<th>表3 理論計算のパラメータ</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>a_1</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>0.08</td>
<td>mm</td>
</tr>
<tr>
<td>c_0</td>
<td>0.015</td>
<td>-</td>
</tr>
<tr>
<td>k_1</td>
<td>$1.37 \times 10^5 \text{ N/m}^{2}$</td>
<td></td>
</tr>
<tr>
<td>k_2</td>
<td>$8.14 \times 10^5 \text{ N/m}^{2}$</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>R_0</td>
<td>0.185</td>
<td>m</td>
</tr>
<tr>
<td>s</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>20 N</td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>6.75</td>
<td>-</td>
</tr>
<tr>
<td>β</td>
<td>0.1175</td>
<td>-</td>
</tr>
</tbody>
</table>

6. 参考文献
[1] 村本, 田中, 星野, 大槻. 月面採取ミッション SELENE-2, 第54回宇宙科学技術連合講演会, 2010
[8] 成田, 大概, 若林, 西田.非線形特性を有する月面探査ローバ用走行機構の検討, 第54回宇宙科学技術連合講演会, 2010
[10] 自動車技術会:自動車技術ハンドブック 基礎・理論編, 自動車技術会, 2004