デジタル画像相関法とインテリジェントハイブリッド法による
CFRP 複合材料の応力解析

Stress analysis of CFRP composites by digital image correlation and
intelligent hybrid method

○学 松原 晃義（東理大院）
Akiyoshi Matsubara, Tokyo University of Science

正 町田 賢司（東理大）
Kenji Machida, Tokyo University of Science

正 萩原 慎二（東理大）
Shinji Ogihara, Tokyo University of Science

Key Words: Digital image correlation, Newton Papshon method, intelligent hybrid method, CFRP

1. 結 言
複合材料は単独の材料では得られない高度な特性、機能をもたらす目的として、性質が異なる複数の材料を組み合わせ，人工的に作成する材料である。CFRP(Carbon Fiber Reinforced Plastics)はその代表的な例であり，今後，航空宇宙分野で発展が期待されていることから，複合材料の構造解析においては今後密に重要となることが予測される。

そこで本研究では異方性材料の線形弾性論を含むテクノロジーのハイブリッド法に組み込むことにより，デジタル画像相関法と二次元のインテリジェントハイブリッド法を組み合わせた CFRP の線形弾性領域における変位解析，応力，ひずみ解析を試みた。一方向強化 CFRP について織維方向と荷重方向の面積角 0°，45°，90°方向において引張試験を行った。荷重負荷前，荷重負荷後両者の画像から変位解析，応力，ひずみ解析を行った。

2. 原 理
2・1 デジタル画像相関法
2 つの標本列

\[x_i, \sigma_x, \sigma_y \]

の標準偏差，平均值である。デジタル画像相関法では変形前の像を変形後の像をそれぞれの標本列として，その相関係数が最小となる位置をその画像間の変位とする。つまりメッシュ上に配置された操作点を中心とした変形前の像を切り取って，その相関係数を求めて，変形前の像を変形後の像のどの点に移動したかを判断する。その後，一連の相関係数を取った点を中心とし，9 点相関係数を求めて，Fig.1 のように Eq.(2)を用いて傾斜補正項に近似することによって，最小値を求める。この操作を繰返すと，

\[Z = 1 - \rho = \frac{(x - c_x)^2 + (y - c_y)^2}{\sigma_x^2 + \sigma_y^2} \]

（2）

2・2 ニュートンラフィンソン法 (NRM)
変形後の像は変形前そのものが変形しているので，これを考えしなければならない。そこで変形を P として以下のように定義する。

\[p = \{u, v, \Delta x, \Delta y\} \]

変形後の座標 (x*, y*) である。

\[x^* = x + u + \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y \]

\[y^* = y + v + \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y \]

（4）

2・3 インテリジェントハイブリッド法
デジタル画像相関法において得られた変位データを西岡らによって提案されたインテリジェントハイブリッド法に適用する。

実験から得られた変位データは測定誤差を含んでいるので，変位原理に基づきこれを最小化する。

\[K^*\{\theta^*\} = \{F\} - \{K\}\{\theta\} \]

（5）

ここで， \(\theta^*\) は修正値の全体座標変位ベクトル， \(\theta\) は実験計測値の節点変位ベクトル， [K] は全体剛性マ
トリックス、そして \(R \) は節点力ベクトルである。実験計測箇所は一般に取り扱い方程式を満足していないので、式(5)の辺りで筆ではない。

\[
R = (F) - [k] \varepsilon^n
\]

ここで、\(R \) は実験計測箇所の誤差を修復する修復ベクトルである。修正変位箇所は次式で与えられる。

\[
[k] \varepsilon^n = R
\]

\(\varepsilon^n \) は \(R \) を節点力とし、解析領域の外周境界を変位拘束することにより、2次元FEMから得られる。

2.4 異方性弾塑性論

今回用いる材料である CFRP は、繊維が方向性を持って配置されており、それ自体に抵抗して弾性率、強度が方向によって大きく異なる、いわゆる異方性を示す。直交異方性層板において、平面応力状態を仮定した応力・ひずみ関係式は次式で与えられる。

\[
\begin{bmatrix}
\sigma_x
\sigma_y
\tau_{xy}
\end{bmatrix}
= \begin{bmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{21} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x
\varepsilon_y
\gamma_{xy}
\end{bmatrix}
\]

\(Q_{11}, Q_{12}, Q_{22} \) は、換算ステフィネスと呼ばれる。

\[
Q_{11} = \frac{E_1}{1 - \nu_{21} \nu_{21}} E_{12},
Q_{12} = \frac{1}{1 - \nu_{21} \nu_{21}},
Q_{22} = \frac{1}{1 - \nu_{21} \nu_{21}}
\]

で与えられる。ここで、\(E_1, E_{12}, G_{12} \) は繊維方向の材料定数。\(E_2, E_{23}, G_{23} \) は繊維に垂直方向の材料定数とする。

次に、材料主軸に角度 \(\theta \) 傾いている状態で試験される場合を考える。この場合、弾性理論と座標変換から応力・ひずみ関係式は次式のようにになる。

\[
\begin{bmatrix}
\sigma_x
\sigma_y
\tau_{xy}
\end{bmatrix}
= \begin{bmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{21} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x
\varepsilon_y
\gamma_{xy}
\end{bmatrix}
\]

マトリックス \(\overline{Q} \) は、換算されたステフィネスマトリックスと呼ばれ、その剛性は次の値を持つ。

\[
\overline{Q}_{11} = Q_{11} \sin^2 \theta + 2Q_{12} \sin \theta \cos \theta + Q_{22} \cos^2 \theta,
\overline{Q}_{12} = \frac{Q_{12} \sin 2\theta + Q_{22} \cos 2\theta}{2},
\overline{Q}_{22} = Q_{22} \sin^2 \theta + 2Q_{12} \sin \theta \cos \theta + Q_{11} \cos^2 \theta
\]

ここで、\(\varepsilon \) はそれぞれ \(\sin \theta \) と \(\cos \theta \) である。

この理論をインテリジェントハイブリッド法に組み込むことにより、異方性材料の弾性波を評価することが可能である。

3. 実験条件

3.1 試験片

実験で使用した試験片は、CFRP が一方向強化 CFRP である。厚さ 0.5mm、幅 10mm、長さ 6mm の短冊状を採取し、両側 40mm をつぶき部とした。引張試験時の試験片両端の応力集中を遮断するためにつかみ部には GFRP のタブを接着した。また、試験片表面には白、黒、グレーのステッカーを順番につけてランダムパターンを作製した。

<table>
<thead>
<tr>
<th>材質</th>
<th>(E_1) (GPa)</th>
<th>(E_2) (GPa)</th>
<th>(v_{12})</th>
<th>(G_{12}) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7070S</td>
<td>120</td>
<td>9.8</td>
<td>0.33</td>
<td>4.36</td>
</tr>
</tbody>
</table>

3.2 実験方法

製作した 3 種類の試験片を用いた。試験方法は AGS-1000A を用い、負荷速度 0.5mm/min で引張試験を行う。試験片の片側中央部にひずみゲージを貼り付け、応力、ひずみを測定する。そしてそれと同時に荷重負荷前の荷重後のそれぞれについて、ひずみゲージを貼り付けた裏側の面を BITRON 社製の cooled CCD camera (400 万画素、画素密度 8bit) を用いて画像を撮影した。画像撮影時の荷重を Table 2 に示す。

<table>
<thead>
<tr>
<th>荷重</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>2400[N]</td>
<td>2400[N]</td>
<td>360[N]</td>
</tr>
</tbody>
</table>

P=0[N]

Fig. 2 Analysis images

5. 解析結果および考察

デジタル画像解析法によって得られた試験片中央部の変位分布の解析結果を Fig. 3, Fig. 4, Fig. 5 に示す。また、ひずみゲージから得られた総ひずみ、横向ひずみの値に対するハイブリッド法によって得られた総ひずみ、横向ひずみの値を Table 3, Table 5, Table 7 に示す。また、ひずみの誤差を Table 4, Table 6, Table 8 に示す。変位分布の解析結果から、実際の応力程度は弾性率が高くて、変位量が少ないことが確認できる。特に、45° 材の繊維方向や、90° 材の横方向の変位量が微量なことから見ても明らかである。

ひずみの誤差をみると、特に 90° 材試験片の横向ひずみの誤差が 33.3%を目指す。デジタル画像解析法においての分解能が原因の一つに考えられる。0.1pixel 以下の値に下がり、0.001mm 以下の変位を正確に観察することが難しい。そのため、ごく微小な変位状態が正確に得ることができなかったために生じた誤差という考えられる。また、実際
に観察した箇所がひずみゲージを貼った裏側の画像である
ということも変位解析の結果に誤差を与える影響になって
いるのではないかと考えられる。

Table 3 Strain value (0°)

<table>
<thead>
<tr>
<th>Analytical result of ε_x</th>
<th>Analytical result of ε_y</th>
<th>Experiment value of ε_x</th>
<th>Experiment value of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.14</td>
<td>0.348</td>
<td>-0.114</td>
<td>0.343</td>
</tr>
</tbody>
</table>

Table 4 Error of ε (0°) [%]

<table>
<thead>
<tr>
<th>Error of ε_x</th>
<th>Error of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 5 Strain value (45°)

<table>
<thead>
<tr>
<th>Analytical result of ε_x</th>
<th>Analytical result of ε_y</th>
<th>Experiment value of ε_x</th>
<th>Experiment value of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.15</td>
<td>0.295</td>
<td>-0.1255</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Table 6 Error of ε (45°) [%]

<table>
<thead>
<tr>
<th>Error of ε_x</th>
<th>Error of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Table 7 Strain value (90°)

<table>
<thead>
<tr>
<th>Analytical result of ε_x</th>
<th>Analytical result of ε_y</th>
<th>Experiment value of ε_x</th>
<th>Experiment value of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.032</td>
<td>0.609</td>
<td>-0.0212</td>
<td>0.657</td>
</tr>
</tbody>
</table>

Table 8 Error of ε (90°) [%]

<table>
<thead>
<tr>
<th>Error of ε_x</th>
<th>Error of ε_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

次に，実験によって得られた変位場からインテリジェン
トハイブリッド法により求めた試験片中央部 2mm×2mm の
σ_y の分布状態を Fig.6，Fig.7，Fig.8 に示す。

Fig.5 Displacement distribution (90°)

Fig.6 Stress distribution by Hybrid method (0°)

Fig.7 Stress distribution by Hybrid method (45°)

Fig.8 Stress distribution by Hybrid method (90°)

今回の実験では解析部分の σ_y が一様応力状態になるよう
に試験片形状を考慮して実験を行ったのだが，応力分布状
態をみると，完全な一様応力場ではないものの，ほぼそれ
に近い状態になっていることが確認できた。また，応力値
に関しても，ひずみゲージで得られた値と比較したところ
特に中央部分に関しては、ほぼ同じ値を示すことが確認できた。一様でない原因としては、やはり得られた変位が正確でないことが挙げられる。その他にも、試験片が完全に均一でないことや、試験片取り付け時の軸線のずれ、チャックのかみ合わせの不均一性等の実験誤差が原因として挙げられるが、それらの誤差を考慮すれば、応力値の分布は妥当な値が得られたものと考えられる。

6. 結言
異方性弾性論をインテリジェントハイブリッド法に組み込むことにより、変形前後の画像から CFRP の線形弾性領域における変位解析、応力、ひずみの評価をすることができた。

参考文献
(4) Hahn, H.T. and Tsai, S.W., J. Comp. Mater, 7 (1973), 102-118.