Abstract
A viscoelastic split Hopkinson bar (SHB) technique is successfully applied to study dynamic behavior of a two-piece golf ball. Strain histories of the incident, reflected and transmitted waves on the input and output bars, resulting from SHB tests on cylindrical specimens of cover and core materials of the two-piece golf ball, are resolved into frequency components by Fourier transformation. Then, in frequency domain waveforms at measurement points are corrected to those at the interfaces between a specimen and bars. The complex compliance of each material is determined by calculating strain-stress ratio in the frequency domain, and 3-element viscoelastic models are subsequently identified based on variations of the complex compliances.