1 はじめに
スターングテクノラリーは発足以来早くも第9回に重ねている。このコンテストは（社）日本機械学会創立100周年記念事業として第1回が開催されて以来、多くの参加者を期待毎回盛大に成功を収めてい る。スターングテクノラリー、スターングエンジンが直線部分と試験走行の問題を解決策提案する場として開催されている。このコンテストは多くの諸問題、学会、協会等の支援の要請を受けて（社）日本工芸教育協会、（社）全国高等学校校長会、スターングテクノラリー技術会の主催で開催され、毎年、全国の中学校、工業高校、高等、職業短大、大学工学部および一般の参加者で構成されている。第9回スターングテクノラリーでは215台の参加車両の申し込みがあった。ここでは、第9回スターングテクノラリーの実施状況について報告する。

2 開催状況と特徴
第9回大会は11月19日に日本工業大学キャンパス内に会場を設置し開催された（図1）。遠方からの参加者は自家用車で宿泊したり、開始時間に間に合うように朝一番の電車に乗って近くにいきいただけ、大変感謝している。このコンテストは、ミニクラス（M）：市販ミニ四駆用角形走行で9m、ノーマルクラス（N）：幅28cmの直線部分を有する楕円形状トラック走行、人間乗車（L）：100mで平坦な直線コースにおいて、前後走行の進行を競うスリッドコンテストと、エンジンガーのデザインを競うアイディアコンテストをあわせて今回より新しく逆サイクルを利用したクララコンテストに分けて審査を行うものである。

図1 開会式風景

(1)ミニクラス
このクラスでは、大部分の参加車両のエンジンは、蒸気加熱式の設計されており、主流は2ピストン型、機械で製作されスピードも速い車両が多く見られた。（図2）

図2 MSクラス優勝車両

(2)ノーマルクラス
ノーマルクラスは工芸系専門学校以上であるが設計・製作能力や各種加工機械等の使用が可能であるなど、条件が整っているため多くの参加者が見込まれる。しかし、初参加の場合その製作的能力等によりMクラスに流れがちで、Nクラスの参加台数は増加しにくいのが現状である。車両規定により、加熱方式は“熱源のまでのおこないう”となっている。市販のガスバーナーを搭載する形式が多く、キャップ式が主流である。このクラスの参加車両はスチール球を用いたディスプレイの使用が多く、キャップ式をディスプレイに用いた多気筒エンジンカーなどユニークな車両も見られた。（図3）

図3 多気筒ビーエンジンカー

(3)人間乗車クラス
人間乗車クラスは、 Guildコースで走行の一定時間内の走行距離を競う形式で大変なわされた。熱交換器は多管式とキャップ式が半々で、熟熱熱源は大部分が市販のガスバーナーを使用しており、加熱能力が非常に季節、専用の加熱バーナーの設計が望まれる。また、熱再生器の組み込みがなされたものは主に季節であり、進歩が停滞しているが粘性化される。冷却器については、水冷式が約半数で、その他は冷凍装置をつけていない設計である。多くの参加チームが熱源の高い気温大気圧であると思われる多気筒エンジンの傾向が見られた（図4）。パッファ圧力や作動流体を含めた更なる改善の努力を望むとともに、本格的なマシンデザイン並びに設計・加工技術のレベルアップを要望する。

図4 6気筒人間乗車形
(4) 宇宙リコース
市販ミニアコースコース中間と同一走路幅の直径80cmの円周走路を置き、宇宙リを何回できるかで競った（図5）。マシンはミニアクラス参加車をそのまま持って走り、蓄熱方式でありながら約9週できるマシンもあった。

図5 宇宙リコース

(5) アイデア部門
スターリングエンジンは、スターリングサイクルが組めば、材質・形状に関係なく動くという優れた特性を有している。そのため、もっと多くの提案されることが多い。その中で、明治大学のパルス管エンジンクーカーは新しい提案案として高く評価できるものである。

図6 パルス管エンジンクーカー

(6) クラス部門
スターリングサイクルが“仕事を熱に変える”という逆サイクルが可能であることからスターリングクノラリの新たな分野として今回より始め、単三乾電池2本で、10分間動作させクーラ低温部の開始前の温度差を競う形式でおこなわれた（図）。初回でありながら多数の参加があり、空気大気圧であるから約28℃の温度差が得られる性能であった。

図7 β型冷凍機

3 開催状況
開催当日は晴天に恵まれ、参加者は朝早くから登録手続きやマシンの整備に追われていた。しかし、近年、その入賞車両の結果は大幅には向上していない。これは、ここ数年参加車両が数多く増えたことによる。設計段階で工夫や努力をせずに参加規定を満たせばよいという設計となることに因起しているものと思われる。今後は、大幅に参加規定を見直す必要がある。一方、スターリングテクノラリーは、国内で注目されている他の試作と比較して、動きやすさが少なく、どういった力がないものかという欠点もある。そこで、他の競技種目（飛行機、船など）の開発と競争観をもとに進めることに重点が置かれている。そこで、この“スターリングテクノラリー”理解と協力を願いたい。

表1. 第9回スターリングテクノラリー公式結果