Thermal efficiency of a traveling-wave thermoacoustic engine using tapered tube

○学 加瀬 亜樹(東海大) 　正 長谷川 真也(東海大)

Ryuji KASE, Tokai University. Kitakamame-4 1-1, Hiratsuka, Kanagawa
Shinya HASEGAWA, Tokai University
Yasuo OSHINOYA, Tokai University

According to Ceperley's calculation, higher efficiency is possible with higher impedance, e.g., if \(z = 10p_{00} \), \(\eta \) reaches 79%. In order to achieve \(z = 10p_{00} \), he explained the cross-sectional area of the enlarged tube would have to be 10 times larger than that of the input tube. On the other hand, losses caused by sudden expansions in regenerator was found. It can be reduced somewhat by installing a tapered tube between the two sections of straight tube. In this report, we changed the cross sectional area of the regenerator using tapered tube so it is larger than input tube, and measured its thermal efficiency gain at regenerator positions of a traveling wave heat engine.

Key Words: Thermoacoustic Engine, Acoustic Power, Second Law Efficiency, Regenerator, Tapered tube

1. まえがき

1985年、Ceperleyは蓄熱器位置のインピーダンス \(z \) と熱効率の関係を図示で示している[1]。彼は蓄熱器位置における \(z \) が自由空間中を伝播する進行波音の固有音響インピーダンス \(\beta_0 p_{00} \)、管内平均密度、音速等と等しい場合、純粋散逸が原因となり比カルノーレ効率 \(\eta_c \)（熱効率をカルノーレ効率で除した値）は10%が限界であると述べた。更に熱効率を向上させるためには、高い \(z \) が必要であり、\(z = 10p_{00} \) の場合、\(\eta_c \) が79%が実現可能であるとした。彼は蓄熱器で \(z = 10p_{00} \) を得る方法として、\(z = \beta_0 p_{00} \) の蓄熱器に対して蓄熱器断面積を10倍に拡大することを提案している。ただし、Ceperleyは計算による提案は行ったが、実験による検証は行っていない。そこで我々は2013年、導波管断面積に対して蓄熱器断面積を断面積に拡大し進行波音波エンジンを対象に、蓄熱器拡大率の変化と熱効率および音響パワーサイクルに与える影響を測定した[2]。この装置は蓄熱器と導波管連結部の角度が90°であり、急激な断面積変化を起こしていた。

1997年、Swiftらはパルス管冷凍機のバルス管を適切な傾斜角を有するテーブ形状にすることで音響波を低減できることを報告した[3]。また、導波管の急拡大、急縮小に伴い生じるマイナーロスは導波管をテーブ形状にすることで低減できることが報告されている[4]。テーブ管が音響管、マイナーロスに与える影響は検討されているが、蓄熱器拡大部をテーブ形状にした時に熱効率に与える影響は分かっていなかった。

そこで本報告では、蓄熱器と導波管の連結部に管の軸方向に対して独立した断面積を変化させることができたテーブ部を構え、テーブ角度 \(\theta \) の変化が蓄熱器の熱効率および音響パワーサイクルに与える影響を測定することにした。

2. 実験装置および実験方法

本報告ではFig.1に示す装置を用いて実験を行った。この装置は導波管およびテーブ管、蓄熱器、常温熱交換器、高熱交換器からなるUnitで構成される。導波管の先端には内気被を制御振動させたためのリニアモータを取り付けてある。左端に蓄熱器設置されたリニアモータで音波を発生し、蓄熱器にて振幅を増幅した音波を右端のリニアモータで吸収する構成とする。装置の全長は \(L = 6.6m \)である。実験では、Unitのテーブ部を \(\theta = 6, 7, 8, 9, 90° \) (テーブ管なし)のテーブ管を取り替えることで \(\theta \) を変更させた。この時、蓄熱器、常温および高熱交換器直径は40mm、上流・下流側導波管径は10.9mmの導波管を使用する。実験では、左右に設置したリニアモータの振幅と位相差を機能しジェネレータを用いて調整し、パワーアンプで増幅することで下流側導波管にて進行波音場を実現する。リニアモータの動作周波数は \(f = 35Hz \)とした。高熱交換器は高熱交換器温度 \(T_H \) と常温熱交換器温度 \(T_H \) は熱電対を用いて測定した。常温熱交換器は循環冷却水により \(T_H = 283K \)とした。高熱交換器は電気ヒータで \(T_H = 573K \) に加熱し、投入熱量 \(Q_n \)を調整することに一定に保つ。さらに、Fig.1に示すように取り付けた圧力変換器で計測した圧力変動および、Two-scensor法[5]を用いて管内の音場分布を計測した。この結果から、蓄熱器パワーアおよび断面平均音速振幅の分布を求め、さらに管内音響パワー \(W_n \)を決定した。管断面積を \(A, p_0 \) および \(v \) の位相差を \(\phi \) として音響パワー \(W_n \)は次の式で表される。

\[
W = \frac{A}{2} \left| P \right| \cos \phi
\]

以下のようにして得られた音響パワー \(W_n \)と投入熱量 \(Q_n \)を比較することで、蓄熱器位置における音響パワーサイクルに与える影響を測定した。ここでUnitの上流側面の音響パワー \(W_{n1} \)、下流側面の音響パワー \(W_{n2} \)として以下の式で求められる。

\[
G = \frac{W_{n2}}{W_{n1}}
\]

また、蓄熱器位置の熱効率 \(\eta \)は、以下の式で示すUnit位置の音響パワーサイクルを用いて \(\eta = \frac{W_{n2}}{Q_n} \)と書ける。 \(\Delta W \)は以下の式で表される。

\[
\Delta W = W_{n2} - W_{n1}
\]

しかし、 \(Q_n \) はリニアモータからの入力音響パワーがない \(W_n = 0 \)のときに、蓄熱器を \(T_H = 573K \)まで加熱するための入熱量

Q_{in}を含んでいる。このQ_{in}には単純熱伝導や大気放熱などの音響パワー増幅に直接関与しない値が含まれているため、Q_{in}からQ_{in}を取り除く

\[\Delta Q = Q_{in} - Q_{m} \]

そして得られる値ΔQを用いて、正味の熱効率ηを以下のように表す。

\[\eta = \frac{\Delta W}{\Delta Q} \]

本報告では上述の式を用いて、比カルノー効率\(\eta_2 \)を求める。\(\eta_2 \)は、正味の熱効率ηと温度比\(T_H / T_C \)を用いて以下のように表せる。

\[\eta_2 = \frac{\eta}{1 - \eta} \frac{1}{T_H / T_C} \]

3. 実験結果

Figure 2にTwo-sensor法で測定した音響パワーWを実験で使用したテーブのテーブ角度θに示す。図中の黒点は圧力トランスデューサで計測した圧力変動より、Two-sensor法で算出したWである。その他の実験および破線は外挿して算出したWである。Wは、Unit上流側の音響パワーWで除し、規格化している。また、図中のヘッティング部分はFig.1のUnit位置を示している。この結果より、実験した装置構成全てで蓄熱器にWが増幅していることがわかる。蓄熱器位置における理想的なGは絶対温度比\(T_H / T_C \)より2.02である。本実験では、θ=7°のテーブ管を使用したとき蓄熱器位置でのGが最大となり、その際のGは1.75である。これは温度比\(T_H / T_C \)の86.7%に達する。一方、θ=90°(テーブ管なし)の場合の増幅率は1.69であった。

Figure 3には比カルノー効率\(\eta_2 \)とテーブ角度θの関係を示す。この結果より、θ=7°のテーブ管を使用したときに最大となり、\(\eta_2 = 50.6\% \)であった。一方、θ=90°(テーブ管なし)の場合、\(\eta_2 = 8.49\% \)であった。

4. まとめ

本報告では、蓄熱器と導波管連結部に管の軸方向に対して連続的に断面積を変化させることができるテーブを設け、テーブ角度θの変化が蓄熱器の熱効率および音響パワー増幅率に与える影響を測定した。実験では\(\theta = 7° \)のテーブ管を使用した時に比カルノー効率、音響パワー増幅率がともに最大となり、\(\eta_2 = 50.6\% \), G = 1.75であった。

謝辞

本研究の一部はALCA戦略的創造研究推進事業先端的低炭素化技術開発の助成を受けたものである。ここに感謝の意を表する。

参考文献
2) 加藤重樹, 福田聡大, 長谷川直也, 揚野谷章雄, 断面積変化のある進行波音波エンジンの熱効率, 第16回スターリングサイクルシンポジウム講演会, pp.75-76, (2013).