自然対流下における着霧現象を伴う熱および物質移動

Heat and Mass Transfer with Frosting Phenomena under Natural Convection

正 大久保 英敏（玉川大院） O学 井上 翔（玉川大院）
Hidetoshi Ohkubo and Sho Inoue, Tamagawa University, Tamagawa-gakuen, Machida, Tokyo

Frost formation is a transient phenomenon in which both heat transfer and mass transfer take place simultaneously. In this study, we investigated heat transfer characteristics, the amount of frost deposited, and the surface temperature of the frost layer under natural convection. The procedures of the calculation of the overall heat flux and the amount of frost deposited in the frosting process were proposed. Experimental results were compared with present calculated results, the homogeneous frost growth model, and the unhomogeneous frost growth model respectively.

Key Words: Frost, Heat transfer, Mass transfer, Natural convection, Frost growth model

1. はじめに
着霜現象は熱移動と物質移動の同時移動現象であるとして、霜結晶は温度とともに成長する非定常現象である。大久保・田島は着霜現象の基礎的解釈を目的として着霜曲線を提案した。大久保らはこの着霜曲線に及ぼす諸因子の影響を検討した。また、下村らは均質層成長モデルを提案し、大久保らの霜層厚さの測定値と計算値を比較した結果、定性的ではあるが、着霜現象に及ぼす諸因子の影響を強調できることを示した。

この研究は、着霜現象の基礎的解釈を目的として、霜量、霜層表面温度および霜層の温度の変化を検討した。さらに、着霜現象を評価する諸量を予測する式を提案し、均質層成長モデル、均質霜層成長モデルおよび実験値と比較した。

2. 実験装置および方法
実験装置は大別して、実験室および実験室外の空気の温・湿度を一定に保つための恒温恒湿装置、測定装置、観察装置、実験装置および実験に用いる観察装置、解釈装置を設けた。実験小屋は空気圧、加湿機、除湿機、ヒーターによって温・湿度を制御し、実験小屋に設置したアッサン発風乾燥機温度計によって温・湿度を測定した。

2.1 物質移動

伝熱部は、横50mm×縦100mmの矩形断面を有する無酸素鋼製の柱状で、側面に厚さ1.1mmの鋼板をエポキシ接着着剤で固定して測定した。冷却面温度は、鋼板の裏面にCA熱電対（熱電対0.1mm）を導電性接着着剤およびエポキシ接着着剤で固定して測定した。なお、冷却面温度は一定温度に冷却したエタノール水溶液をラインとして用い、冷却部を所定の周囲に保つ。実験は側面を発熱ウェーハルおよびシリコン接着着剤で固定し、この伝熱部全体を換熱性能の高いプラスタック、ダウボロ製の実験小屋内に設置した。実験条件は、空気温度tᵣ=25℃、絶対湿度xᵣ=0.0099-0.0119kg/kg、冷却面表面温度tᵣ=-5〜40℃、着霜時間t₀=24hである。実験装置は10分毎に市販の放射温度計（ミノルタ製HT-11）を用いて測定した。層面の影響、層面の影響は0.02に設定した。層面は「挿り取り法」で測定した。所定の時間まで冷却面に着霜した層面をプラスタック製のヘッド挿取り、これを混雑およびティッシュペーパーで回収し、熱が昇華する前にタッパーウエア内に密封し、すべての質量を電子天秤で測定した。

2.2 熱移動

本研究では、冷却面温度が時間とともに高まる条件で着霜を伴う熱および物質移動の同時移動現象における熱流束の測定を行なった。着霜現象は冷却面上に付着する霜層が時間的に変化するため、非定常であるが、伝熱面温度をほぼ一定の条件とし、準定常状態であると仮定して実験を行なっている例が多い。非定常の研究は、従来の実験と異なり、伝熱面温度も時間的に変化する。伝熱面は無酸素鋼製であり、伝熱面が昇温する際の温度変化を測定し、集約定数を近似によって熱流束q[W/m²]を求めた。

\[q = \rho \cdot c_p \cdot \frac{dT}{dr} \] (1)

ここで、\(\rho \): 無酸素鋼の密度 \([kg/m^3] \), \(c_p \): 無酸素鋼の比熱 \([kJ/kg \cdot ^\circ C] \), \(T \): 伝熱面温度 \([^\circ C] \), t: 時間 \([sec] \)である。

伝熱部は横50mm×縦100mm、厚さ5mmの無酸素鋼製板であり、側面および裏面を断熱効果のあるベーキラテッドを用いて断熱している。実験は液体収信を入れたデューウォールに伝熱部を浸漬して所定の温度に冷却し、伝熱面温度を実験を5分間一定にした後、実験小屋に恒温に取り付けることをによって開始した。熱流束を評価する場合、熱損失を考慮する必要があるが、熱損失は伝熱部を断熱材で作成したカーボンで覆った状態で実験を行い、集団定数を近似によって求めた。霜層表面温度は市販の放射温度計（ミノルタ製HT-11）を用いて測定した。実験条件は空気温度tᵣ=25℃、絶対湿度xᵣ=0.0099-0.0119kg/kg、冷却面表面温度tᵣ=-5〜40℃である。

3. 計算方法
着霜時の熱流束を熱流束qᵣと定義した場合、熱流束は対流熱伝達流束qᵣ、物質伝達熱流束qᵣ、放射熱伝達流束qᵣの和として評価することができ、近似的な式として以下のようなもので近似することができる。

\[qᵣ = qᵣ + qᵣ + qᵣ \] (2)

対流熱伝達に基づく熱流束qᵣは解析解（3）式を用いて、（4）式から求めた。

\[Nuᵣ = 0.508Prᵣ \left(\frac{Prᵣ}{0.952} \right)^{0.25} \] (3)

ここで、\(hᵣ \)：対流熱伝達率 \([W/m² \cdot ^\circ C] \), tᵣ: 空気温度 \([^\circ C] \),
研究

霜層表面および霜層表面温度

放射温度計を用

の

非均質霜層成長

の

値を示した

「

着霜速度

物質伝達に基づく熱流束 q_m は(5)式から求めた。この時、着霜速度は(6)式から求めた。

$$q_m = \dot{m}_f \left[r + c_v (T_v - T_h) + r' + c_i (T_v - T_w) \right]$$

$$m_f = \left(0.00257 \Delta T_v^2 + 0.238 \Delta T_v + 170 \right) \times 65L^{0.15} x_u$$

ここで、T_v：伝熱面表面温度 [K]、\dot{m}_f：着霜速度 [kg/(m²・hr)]、c_v：水の比熱 [kJ/(kg・K)]、c_i：水の比熱 [kJ/(kg・K)]、r'：水の融解潜熱 [kJ/kg]、r：露点温度 T_d における蒸発潜熱 [kJ/kg] である。

放射伝熱に基づく熱流束 q は(7)式から求めた。

$$q = \sigma \varepsilon r \left(T_{in}^4 - T_{f}^4 \right)$$

ここで、ε_f: 霜の放射率、σ: ステファン-ボルツマン定数 [W/(m²・K^4)] である。

4. 実験結果および考察

物質伝達に基づく熱流束 q_m を求めるには、着霜量を精度良く評価することが重要である。Fig.1 に着霜量の時間的変化を示した。図中には本研究で提案した予測式から求めた計算値を併記した。図から明らかのように、計算値と実験値の対応は良好である。

Fig.2 に霜層表面温度の時間的変化を示した。図中には Cremer-Mehra の予測式、均質霜層成長モデルおよび非均質霜層成長モデルから求めた計算値を併記した。図から分かるように、霜層表面温度を放射温度計で測定した場合、非均質霜層成長モデルから求めた計算値が定性的にも定量的にも実験値との対応が良い。霜層表面温度は着霜現象を評価するために最も重要な要素の一つであるが、現状では測定方法の違いによって測定値が異なっており、霜層表面の定義に従う(2)式の計算結果も異なる。本報では、放射温度計を用いた測定値を用いて(2)式の計算を行ったが、霜層表面および霜層表面温度の定義が今後の課題である。

Fig.2 に熱流束と冷却面温度の関係を示した。図中には本研究で提案した予測式から求めた計算値を併記した。冷却面温度 T_r が -60°C〜-10°C の範囲で実験値と計算値の対応が良いことが分かる。T_r を -60°C で実験値が顕著に高くなっ

5. おわりに

霜層内部でのミスト化の影響である。また、-10°C < T_r で実験値が低下する原因として霜層表面での蒸発が観察されたことを付記しておく。

参考文献

(2) H.Ohkubo: Proceeding of the 7th international symposium on thermal engineering and Science for Cold Regions (2001), pp.73-78.